Skip to main content

Modeling Debris Flows in the Aftermath of the 2007 Southern California Wildfires

  • Chapter
  • First Online:
Storm-triggered Landslides in Warmer Climates
  • 927 Accesses

Abstract

In Sect. 5.1.2, we discussed root fortification for slopes. Under natural circumstances, wildfires can cause perturbations on ecosystems and also have landslide consequences. Actually, fires are important in driving land cover change (Fig. 9.1). Decades are needed for damaged forest stands to recover fully and even longer time periods are required for the restoration of soil nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brooks R, Corey W (1964) Hydraulic properties of porous media. Hydrology paper 3. Colorado State University, Fort Collins

    Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Anal A 62:23–27

    Article  Google Scholar 

  • Campbell R (1975) Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, southern California. United States Geological Society professional paper 851

    Google Scholar 

  • Cannon S, Gartner J (2005) Wildfire related debris flow from a hazards perspective, Chapter 15. In: Jacob M, Hungr O (eds) Debris-flow hazards and related phenomena: Springer-Praxis books in geophysical sciences. Springer, New York, pp 321–344

    Google Scholar 

  • Cannon S, Michael J, Gartner J, Gleason J (2003) Assessment of potential debris-flow peak discharges from basins burned by the 2002 Missionary Ridge Fire, Colorado, open-file report 03-332. US Geological Survey, Denver, CO

    Google Scholar 

  • Cannon S, Gartner J, Rupert M, Michael J (2004) Emergency assessment of debris-flow hazards from basins burned by the Cedar and Paradise Fires of 2003, southern California, open-file report 2004-1011. US Geological Survey, Denver, CO

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445

    Article  Google Scholar 

  • Carter W, Shrestha R, Slatton K (2007) Geodetic laser scanning. Phys Today 60:41–47

    Article  Google Scholar 

  • Casadei M, Dietrich W, Miller N (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Process Landf 28:925–950

    Article  Google Scholar 

  • Chambers J, Higuchi N, Teixeira L, Santos J, Laurance S, Trumbore S (2004) Response of tree biomass and wood litter to disturbance in a Central Amazon forest. Oecologia 141:596–614

    Article  Google Scholar 

  • Chung C, Fabbri A, van Westen C (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Kluwer, New York, pp 107–134

    Chapter  Google Scholar 

  • Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J, Chang P, Doney S, Hack J, Henderson T, Kiehl J, Large W, McKenna D, Santer B, Smith R (2006) The community climate system model version 3 (CCSM3). J Climate 19:2122–2143

    Google Scholar 

  • Costa JE (1984) Physical geography of debris flows. In: Fleisher PJ, Costa JE (eds) Developments and applications in geomorphology. Springer, New York, pp 268–317

    Chapter  Google Scholar 

  • Crozier M, Preston N (1999) Modelling changes in terrain resistance as a component of landform evolution in unstable hill country. In: Hergarten S, Neugebauer H (eds) Process modelling and landform evolution. Lecture notes in earth science, vol 78. Springer, Heidelberg, pp 267–284

    Chapter  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Cruden DM, Varnes DJ (eds) Landslides investigation and control. Special report 247. Transportation Research Board, Washington, DC, pp 36–75

    Google Scholar 

  • Debano L (2000) The role of fire and soil heating on water repellency in wild land environments: a review. J Hydrol 231–232:194–206

    Google Scholar 

  • Dietrich W, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Zeitsch Geomorphol Suppl 29:191–206

    Google Scholar 

  • Dietrich W, Reiss R, Hsu M, Montgomery D (1995) A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrol Process 9:383–400

    Article  Google Scholar 

  • Dietrich W, Bellugi D, Real De Asua R (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta M, Burges S (eds) Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas, vol 2, Water science and application. American Geophysical Union, Washington, DC, pp 195–227

    Google Scholar 

  • Eagleson P (1978) Climate, soil and vegetation 3. A simplified model of soil moisture movement in liquid phase. Water Resour Res 14:722–730

    Article  Google Scholar 

  • Godt J, Baum R, Chleborad A (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landforms 31:97–110

    Article  Google Scholar 

  • Gritzner M, Marcus W, Aspinall R, Custer S (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Groisman P, Knight R, Karl T, Easterling D, Sun B, Lawrimore J (2004) Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J Hydrometeorol 5:64–85

    Article  Google Scholar 

  • Homer C, Huang C, Yang L, Wylie B, Coan M (2004) Development of a 2001 national landcover database for the United States. Photogr Eng Remote Sensing 70:829–840

    Article  Google Scholar 

  • Huffman E, MacDonald L, Stednick J (2001) Strength and persistence of fire-induced soil hydrophobicity under ponderosa and lodgepole pine, Colorado Front Range. Hydrol Process 15:2877–2892

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7(3):221–238

    Google Scholar 

  • Hutchinson J (1988) Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Proceedings of the 5th international symposium on landslides, Lausanne, vol 1, Balkema, Rotterdam, pp 3–35

    Google Scholar 

  • IPCC, AR4 (2007) Climate change 2007. In: Solomon S, Qin D, Manning M (eds) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Iverson R (1997) The physics of debris flows. Rev Geophys 35:245–296

    Article  Google Scholar 

  • Jibson R, Harp E, Michael J (1998) A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area, open file rep. US Geological Survey, Denver, CO, pp 98–113

    Google Scholar 

  • Karl T, Trenberth K (2003) Modern global climate change. Science 302:1719–1723

    Article  Google Scholar 

  • Karoly D, Stott P (2006) Anthropogenic warming of central England temperature. Atmos Sci Lett 7:81–85

    Article  Google Scholar 

  • Kharin V, Zwiers F (2005) Estimating extremes in transient climate change simulations. J Climate 18:1156–1173

    Article  Google Scholar 

  • Kraebel C (1934) The La Crescenta flood. Am For 40(251–254):286–287

    Google Scholar 

  • Larsen M, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment. Geogr Anal A 75:13–23

    Article  Google Scholar 

  • Lawrence D, Slater A (2008) Incorporating organic soil into a global climate model. Climate Dynam 30:145–160

    Article  Google Scholar 

  • Letts M, Roulet N, Comer N, Skarupa M, Verseghy D (2000) Parametrization of Pearland hydraulic properties for the Canadian land surface scheme. Atmos Ocean 38:141–160

    Article  Google Scholar 

  • Liu B, Nearing M, Shi P, Jia Z (2001) Slope length effects on soil loss for steep slopes. In: Stott D, Mohtar R, Steinhardt G (eds) Sustaining the global farm. pp 784–788. http://topsoil.nserl.purdue.edu/nserlweb-old/isco99/pdf/ISCOdisc/tableofcontents.htm

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change. In: McCarthy JJ et al (eds) Impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, MA, p 1032

    Google Scholar 

  • Meehl J, Tebaldi C (2004) More intense, more frequent and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Meyer G, Pierce J (2003) Climatic controls on fire-induced sediment pulses in Yellowstone National Park and Central Idaho: a long-term perspective. For Ecol Manage 178:89–104

    Article  Google Scholar 

  • Moody J, Martin D (2001) Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf Process Landf 26:1049–1070

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios (SRES). Cambridge University Press, New York, 612pp

    Google Scholar 

  • NRC (2002) Inevitable surprise. Abrupt climate change. National Academy Press, Washington, DC

    Google Scholar 

  • Potter C, Randerson J, Field C, Matson P, Vitousek P, Mooney H, Klooster S (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841

    Article  Google Scholar 

  • Ren D (2001) Scaling issues in the calculation of surface latent and sensible heat fluxes at Blue River Basin using SHEELS model. M.S. thesis, University of Oklahoma, Norman, OK, p 236

    Google Scholar 

  • Ren D, Xue M (2004) An improved force-restore model for land-surface modeling. J Appl Meteorol 43:1768–1782

    Article  Google Scholar 

  • Ren D, Leslie LM, Karoly DJ (2008) Landslide risk analysis using a new constitutive relationship for granular flow. Earth Interact 12:1–16

    Article  Google Scholar 

  • Ren D, Wang J, Fu R, Karoly D, Hong Y, Leslie LM, Fu C, Huang G (2009) Mudslide caused ecosystem degradation following Wenchuan earthquake 2008. Geophys Res Lett 36, L05401. doi:10.1029/2008GL036702

    Google Scholar 

  • Ren D, Fu R, Leslie LM, Dickinson R, Xin X (2010) A storm-triggered landslide monitoring and prediction system: formulation and case study. Earth Interact 14:12. doi:10.1175/2010EI337.1

    Article  Google Scholar 

  • Reneau S, Dietrich W (1987) The importance of hollows in debris flow studies; examples from Marin County, California. Geol Soc Am Rev Eng Geol 7:165–180

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Semenov V, Bengtsson L (2002) Secular trends in daily precipitation characteristic greenhouse gas simulation with a coupled AOGCM. Climate Dynam 19:123–140

    Article  Google Scholar 

  • Sidle R (1992) A theoretical model of the effects of timber harvesting on slope stability. Water Resour Res 28:1897–1910

    Article  Google Scholar 

  • Smith R, Smettem K, Broadbridge P, Woolhiser D (2002) Water resources monograph, 15. Infiltration theory for hydrologic applications. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  • Wagner R, Nelson R (1961) Soil survey of the San Mateo Area, California. USDA, soil conservation service, series 1954, no. 13. USDA, Soil Conservation Service

    Google Scholar 

  • Wells W (1981) Some effects of brushfires on erosion processes in coastal southern California. In: Davies T, Pearce A (eds) Erosion and sediment transport in pacific rim steeplands. International Association of Hydrological Sciences, Washington, DC, pp 305–342

    Google Scholar 

  • Wilford D, Sakals M, Innes J, Sidle R (2005) Fans with forests: contemporary hydrogeomorphic processes on fans with forests in west central British Columbia, Canada. Geol Soc Lond (Spec Publ) 251:25–40

    Article  Google Scholar 

  • Wilson R (2000) Climatic variations in rainfall thresholds for debris-flow activity. In: Claps P, Wieczorek GW (eds) Proceedings of first Plinius conference on Mediterranean storms, Mareta, Italy, 14–16 Oct 1999. European Geophysical Union, Munich, pp 415–442

    Google Scholar 

  • WMO (2002) WMO statement on the status of the global climate in 2002. World Meteorological Organisation Press Release, 17 Dec 2002. http://www.wmo.ch/web/Press/Press684.pdf

  • Works Bureau (1998) Information paper on slope safety, provisional Legco panel on planning lands and works. Hong Kong Legislative Council, Hong Kong

    Google Scholar 

  • Zhang X, Kondragunta S (2006) Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophys Res Lett 33, L09402. doi:10.1029/2006GL025879

    Google Scholar 

  • Zhu J, Dabney S, Flanagan D (2001) Updating slope topography during erosion simulations with the water erosion prediction project. In: Stott D, Mohtar R, Steinhardt G (eds) Sustaining the global farm. pp 882–887. http://topsoil.nserl.purdue.edu/nserlweb-old/isco99/pdf/ISCOdisc/tableofcontents.htm

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ren, D. (2015). Modeling Debris Flows in the Aftermath of the 2007 Southern California Wildfires. In: Storm-triggered Landslides in Warmer Climates. Springer, Cham. https://doi.org/10.1007/978-3-319-08518-0_9

Download citation

Publish with us

Policies and ethics