Skip to main content

Human Brain Evolution: Ontogeny and Phylogeny

  • Chapter
  • First Online:
Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

Abstract

The evolution of the unique human brain included changes in the pattern of brain growth and development. Therefore investigation of ontogenetic patterns is key to improve our understanding about hominin brain evolution. Important evidence comes from so-called endocasts, i.e. endocranial casts of the bony braincase that approximate brain morphology. The pattern of ontogenetic brain size increase has been investigated for humans, apes, and our fossil relatives based on endocranial volumes and brain weights, and has been related to evolutionary brain size increases found from endocranial volumes. Furthermore, endocranial surface features have been interpreted as impressions of brain convolutions and used to interpret evolutionary brain reorganization. Overall endocranial shape however has been neglected for a long time due to methodological issues around measuring shape. Recent studies have overcome this problem and provided new insights into brain development and evolution. Here I review the current knowledge about the relationships between ontogenetic changes and evolutionary changes in endocranial size and shape and emphasize comparisons between humans and our closest extant and extinct relatives, the chimpanzees and Neanderthals. These comparisons help to understand the evolution of modern humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199

    Article  Google Scholar 

  • Alba DM (2010) Cognitive inferences in fossil apes (Primates, Hominoidea): does encephalization reflect intelligence. J Anthropol Sci 88:11–48

    Google Scholar 

  • Alemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D, Reed D, Wynn JG (2006) A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443:296–301

    Article  Google Scholar 

  • Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350

    Article  Google Scholar 

  • Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34

    Article  Google Scholar 

  • Bastir M, Rosas A (2006) Correlated variation between the lateral basicranium and the face: a geometric morphometric study in different human groups. Arch Oral Biol 51:814–824

    Article  Google Scholar 

  • Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle cranial fossa anatomy and the origin of modern humans. Anat Rec (Hoboken) 291:130–140

    Article  Google Scholar 

  • Bauchot R, Stephan H (1966) Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30:160–196

    Article  Google Scholar 

  • Berger LR, de Ruiter DJ, Churchill SE, Schmid P, Carlson KJ, Dirks PH, Kibii JM (2010) Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science 328:195–204

    Article  Google Scholar 

  • Bischoff TLW (1880) Das hirngewicht des menschen. P. Neusser, Bonn

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature 431:1055-1061

    Google Scholar 

  • Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL (2005) Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275–290

    Article  Google Scholar 

  • Brumm A, Aziz F, van den Bergh GD, Morwood MJ, Moore MW, Kurniawan I, Hobbs DR, Fullagar R (2006) Early stone technology on Flores and its implications for Homo floresiensis. Nature 441:624–628

    Article  Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci U S A 100:15335–15340

    Article  Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Article  Google Scholar 

  • Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Article  Google Scholar 

  • Bruner E (2010) Morphological differences in the parietal lobes within the human genus. Curr Anthropol 51:77–88

    Article  Google Scholar 

  • Bruner E, De La Cuétara JM, Holloway R (2011a) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556

    Google Scholar 

  • Bruner E, Martin-Loeches M, Burgaleta M, Colom R (2011b) Midsagittal brain shape correlation with intelligence and cognitive performance. Intelligence 39:141–147

    Google Scholar 

  • Bruner E (2014) Functional craniology and brain evolution. In: Bruner E (ed) Human paleoneurology. Springer, Berlin pp 95–120

    Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, australopithecus sediba. Science 333:1402–1407

    Article  Google Scholar 

  • Carper RA, Moses P, Tigue ZD, Courchesne E (2002) Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16:1038–1051

    Article  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110

    Article  Google Scholar 

  • Cherniak C (1990) The bounded brain: toward quantitative neuroanatomy. J Cogn Neurosci 2:58–68

    Article  Google Scholar 

  • Chklovskii DB, Stevens CF (2000) Wiring optimization in the brain. Adv Neural Inf Process Syst 12:103–107

    Google Scholar 

  • Chklovskii DB, Schikorski T, Stevens CF (2002) Wiring optimization in cortical circuits. Neuron 34:341–347

    Article  Google Scholar 

  • Coqueugniot H, Hublin JJ, Veillon F, Houët F, Jacob T (2004) Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:299–302

    Article  Google Scholar 

  • Coqueugniot H, Hublin J-J, Sempe M, Houët F (2005) Croissance et données transversales : réflexions sur de possibles biais méthodologiques. Le cas du périmètre crânien.XXVIIe Colloque du Groupement des Anthropologistes de Langue Française. Anthropobiologie: Evolution et histoire des peuplements. Franc: France

    Google Scholar 

  • Coqueugniot H, Hublin JJ (2007) Endocranial volume and brain growth in immature Neandertals. Periodicum Biologorum 109:379

    Google Scholar 

  • Coqueugniot H, Hublin JJ (2012) Age-related changes of digital endocranial volume during human ontogeny: results from an osteological reference collection. Am J Phys Anthropol 147:312–318

    Article  Google Scholar 

  • Count EW (1947) Brain and body weight in man—their antecedents in growth and evolution—a study in dynamic somatometry. Ann N Y Acad Sci 46:993–1122

    Article  Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    Article  Google Scholar 

  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290:337–344

    Article  Google Scholar 

  • Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J (2007) Mapping early brain development in autism. Neuron 56:399–413

    Article  Google Scholar 

  • Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115:195–199

    Article  Google Scholar 

  • Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K (2007) Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 61:458–464

    Article  Google Scholar 

  • Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML (2005) Accelerated head growth in early development of individuals with autism. Pediatr Neurol 32:102–108

    Article  Google Scholar 

  • DeSilva J, Lesnik J (2006) Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. J Hum Evol 51:207–212

    Article  Google Scholar 

  • DeSilva JM, Lesnik JJ (2008) Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. J Hum Evol 55:1064–1074

    Article  Google Scholar 

  • Dewey KG, Heinig MJ, Nommsen LA, Peerson JM, Lönnerdal B (1993) Breast-fed infants are leaner than formula-fed infants at 1 year of age: the DARLING study. Am J Clin Nutr 57:140–145

    Google Scholar 

  • Dienske H (1986) A comparative approach to the question of why human infants develop so slowly. In: Else JG, Lee PC (eds) Primate ontogeny, cognition and social behaviour. Cambridge University Press, Cambridge, pp 147–154

    Google Scholar 

  • Durston S, Davidson MC, Tottenham N, Spicer J, Galvan A, Fossella JA, Casey BJ (2004) Longitudinal functional MRI of the development of cognitive control. Soc Neurosci Abstr 319:18

    Google Scholar 

  • Fairbanks LA (2000) The developmental timing of primate play: a neural selection model. In: Taylor Parker S, Langer J, McKinney ML, (eds) Biology, brains, and behavior—the evolution of human development. School for American Research Press, Santa Fe, pp 131–158

    Google Scholar 

  • Falk D (1980a) Hominid brain evolution: the approach from paleoneurology. Yearb Phys Anthropol 23:93–107

    Article  Google Scholar 

  • Falk D (1980b) A reanalysis of the South African australopithecine natural endocasts. Am J Phys Anthropol 53:525–539

    Article  MathSciNet  Google Scholar 

  • Falk D (1983) The Taung endocast: a reply to Holloway. Am J Phys Anthropol 60:479–489

    Article  Google Scholar 

  • Falk D (1985) Apples, oranges, and the lunate sulcus. Am J Phys Anthropol 67:313–315

    Article  Google Scholar 

  • Falk D (1987) Hominid paleoneurology. Annu Rev Anthropol 16:13–28

    Article  Google Scholar 

  • Falk D, Redmond JC, Guyer J, Conroy C, Recheis W, Weber GW, Seidler H (2000) Early hominid brain evolution: a new look at old endocasts. J Hum Evol 38:695–717

    Article  Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308:242–245

    Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Jatmiko, Saptomo EW, Imhof H, Seidler H, Prior F (2007) Brain shape in human microcephalics and Homo floresiensis. Proc Natl Acad Sci USA 104:2513–2518

    Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Jatmiko, Wayhu Saptomo E, Prior F (2009) LB1’s virtual endocast, microcephaly, and hominin brain evolution. J Hum Evol 57:597–607

    Google Scholar 

  • Fragaszy DM, Bard K (1997) Comparison of development and life history in Pan and Cebus. Int J Primatol 18:683–701

    Article  Google Scholar 

  • Fragaszy DM, Visalberghi E, Fedigan LM (2004) The complete capuchin: the biology of the genus cebus. Cambridge University Press, Cambridge

    Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    Article  Google Scholar 

  • Golovanova LV, Hoffecker JF, Kharitonov VM, Romanova GP (1999) Mezmaiskaya cave: a Neanderthal occupation in the northern Caucasus. Curr Anthropol 40:77–86

    Article  Google Scholar 

  • Gould SJ (1975) Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib Primatol 5:244–292

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Pyschometrika 40:33–51

    Article  MATH  MathSciNet  Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. Slice DEModern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98

    Chapter  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    Article  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2011) Virtual Reconstruction of the Le Moustier 2 newborn skull. Implications for Neandertal ontogeny. PALEO 22:155–172

    Google Scholar 

  • Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin JJ (2012) A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J Hum Evol 62:300–313

    Article  Google Scholar 

  • Gunz P (2014) Computed tools for paleoneurology. In: Bruner E (ed) Human paleoneurology. Springer, Berlin pp 95–120

    Google Scholar 

  • Harvey PH, Martin RD, Clutton-Brock TH (1987) Life histories in comparative perspective. In: Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT (eds) Primate societies. University of Chicago Press, Chicago, pp 181–196

    Google Scholar 

  • Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J (2005) Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiat 62:1366–1376

    Article  Google Scholar 

  • Herndon JG, Tigges J, Anderson DC, Klumpp SA, McClure HM (1999) Brain weight throughout the life span of the chimpanzee. J Comp Neurol 409:567–572

    Article  Google Scholar 

  • Hofman MA (1989) On the evolution and geometry of the brain in mammals. Prog Neurobiol 32:137–158

    Article  Google Scholar 

  • Ho KC, Roessmann U, Hause L, Monroe G (1981) Newborn brain weight in relation to maturity, sex, and race. Ann Neurol 10:243–246

    Article  Google Scholar 

  • Holliday, MA (1986) Body composition and energy needs during growth. In: Falkner F, Tanner JM (eds) Human growth: A comprehensive treatise. Plenum Press, New York, pp 101–117

    Google Scholar 

  • Holloway RL (1978) The relevance of endocasts for studying primate brain evolution. Noback CRSensory systems of primates. Plenum Press, New York, pp 181–200

    Chapter  Google Scholar 

  • Holloway RL (1981) Revisiting the South African Taung australopithecine endocast: The position of the lunate sulcus as determined by the stereoplotting technique. Am J Phys Anthropol 56:43–58

    Article  Google Scholar 

  • Holloway RL (1984) The Taung endocast and the lunate sulcus: a rejection of the hypothesis of its anterior position. Am J Phys Anthropol 64:285–287

    Article  Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts, the paleoneurological evidence. Wiley-Liss, Hoboken, New Jersey

    Book  Google Scholar 

  • Holloway RL (2014) Paleoneurology, Resurgent! In: Bruner E (ed) Human paleoneurology. Springer, Berlin pp 95–120

    Google Scholar 

  • Holt AB, Cheek DB, Mellits ED, Hill DE (1975) Brain size and the relation of the primate to the nonprimate. Cheek DBFoetal and postnatal cellular growth: hormones and nutrition. Wiley, New York, pp 23–44

    Google Scholar 

  • Hrdy SB (2007) Evolutionary context of human development: The cooperative breeding model. In: Salmon CA, Shackelford TK (eds) Family relationships: an evolutionary perspective. Oxford University Press, New York, pp 39–68

    Chapter  Google Scholar 

  • Hublin JJ, Coqueugniot H (2006) Absolute or proportional brain size: that is the question. A reply to Leigh’s (2006) comments. J Hum Evol 50:109–113

    Article  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28:517–527

    Article  Google Scholar 

  • Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235

    Article  Google Scholar 

  • Jacob T, Indriati E, Soejono RP, Hsü K, Frayer DW, Eckhardt RB, Kuperavage AJ, Thorne A, Henneberg M (2006) Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: population affinities and pathological abnormalities. Proc Natl Acad Sci USA 103:13421–13426

    Article  Google Scholar 

  • Jeffery N, Spoor F (2002) Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol 118:324–340

    Article  Google Scholar 

  • Jeffery N (2003) Brain expansion and comparative prenatal ontogeny of the non-hominoid primate cranial base. J Hum Evol 45:263–284

    Article  Google Scholar 

  • Jeffery N (2005) Cranial base angulation and growth of the human fetal pharynx. Anat Rec A Discov Mol Cell Evol Biol 284:491–499

    Article  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Jolicoeur P, Baron G, Cabana T (1988) Cross-sectional growth and decline of human stature and brain weight in 19th-century Germany. Growth Dev Aging 52:201–206

    Google Scholar 

  • Jordaan HV (1976) Newborn: adult brain ratios in hominid evolution. Am J Phys Anthropol 44:271–278

    Article  Google Scholar 

  • Kappeler PM, Pereira ME (2003) Primate life histories and socioecology. University of Chicago Press, Chicago

    Google Scholar 

  • Kennedy GE (2005) From the ape’s dilemma to the weanling’s dilemma: early weaning and its evolutionary context. J Hum Evol 48:123–145

    Article  Google Scholar 

  • Klein RG (2009) The human career : human biological and cultural origins. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182

    Article  Google Scholar 

  • Langer J (2000) The heterochronic evolution of primate cognitive development. In: Taylor Parker S, Langer J, McKinney ML, (eds) Biology, brains, and behavior—the evolution of human development. School for American Research Press, Santa Fe, pp 215–235

    Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 62:139–164

    Article  Google Scholar 

  • Leigh SR (2006) Brain ontogeny and life history in Homo erectus. J Hum Evol 50:104–108

    Article  Google Scholar 

  • Leigh SR, Blomquist GE (2007) Life history. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, Oxford, pp 396–407

    Google Scholar 

  • Leigh SR (2012) Brain size growth and life history in human evolution. Evol Biol 39:587–599

    Google Scholar 

  • Leonard WR, Robertson ML (1992) Nutritional requirements and human evolution: a bioenergetics model. Am. J. Hum. Biol. 4:179–195

    Article  Google Scholar 

  • Leonard WR, Robertson ML (1994) Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. Am. J. Hum. Biol. 6:77–88

    Article  Google Scholar 

  • Leonard WR, Robertson ML (1997) Comparative primate energetics and hominid evolution. Am J Phys Anthropol 102:265–281

    Article  Google Scholar 

  • Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW (2003) Metabolic correlates of hominid brain evolution. Comp Biochem Physiol A: Mol Integr Physiol 136:5–15

    Article  Google Scholar 

  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA 99:1134–1139

    Article  Google Scholar 

  • Lovejoy CO, Heiple KG, Burstein AH (1973) The gait of australopithecus. Am J Phys Anthropol 38:757–779

    Article  Google Scholar 

  • Marchand F (1902) Ueber das hirngewicht des menschen. B.G. Teubner, Leipzig

    Google Scholar 

  • Martin RD (1983) Human brain evolution in an ecological context. 52nd James Arthur lecture on the evolution of the human brain. American Museum of Natural History, New York

    Google Scholar 

  • Martin RD (1996) Scaling of the mammalian brain: the maternal energy hypothesis. Physiology 11:149

    Google Scholar 

  • Martin RD, Maclarnon AM, Phillips JL, Dobyns WB (2006) Flores hominid: new species or microcephalic dwarf? Anat Rec A Discov Mol Cell Evol Biol 288:1123–1145

    Article  Google Scholar 

  • Maureille B (2002) A lost Neanderthal neonate found. Nature 419:33–34

    Article  Google Scholar 

  • Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241:R203–R212

    Google Scholar 

  • Mitteroecker P, Gunz P, Bookstein FL (2005) Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evol Dev 7:244–258

    Article  Google Scholar 

  • Moore MW, Sutikna T, Jatmiko, Morwood MJ, Brumm A (2009) Continuities in stone flaking technology at Liang Bua, Flores, Indonesia. J Hum Evol 57:503–526

    Google Scholar 

  • Morwood MJ, Soejono RP, Roberts RG, Sutikna T, Turney CS, Westaway KE, Rink WJ, Zhao JX, van den Bergh GD, Due RA, Hobbs DR, Moore MW, Bird MI, Fifield LK (2004) Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431:1087–1091

    Article  Google Scholar 

  • Mraz KD, Green J, Dumont-Mathieu T, Makin S, Fein D (2007) Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. J Child Neurol 22:700–713

    Article  Google Scholar 

  • Nagy Z, Westerberg H, Klingberg T (2004) Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci 16:1227–1233

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Article  Google Scholar 

  • Neubauer S, Gunz P, Schwarz U, Hublin JJ, Boesch C (2012) Brief communication: endocranial volumes in an ontogenetic sample of Chimpanzees from the Tai Forest National Park, Ivory Coast. Am J Phys Anthropol 147:319–325

    Article  Google Scholar 

  • Neubauer S, Hublin JJ (2012) The evolution of human brain development. Evol Biol 39:568–586

    Article  Google Scholar 

  • Ovchinnikov IV, Götherström A, Romanova GP, Kharitonov VM, Lidén K, Goodwin W (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404:490–493

    Article  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  Google Scholar 

  • Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    Article  Google Scholar 

  • Passingham RE (1982) The human Primate. WH Freeman, San Francisco

    Google Scholar 

  • Ponce de León MS, Golovanova L, Doronichev V, Romanova G, Akazawa T, Kondo O, Ishida H, Zollikofer CP (2008) Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci U S A 105:13764–13768

    Article  Google Scholar 

  • Ragir S (1985) Retarded development: The evolutionary mechanism underlying the emergence of the human capacity for language. J Mind Behav 6:451–467

    Google Scholar 

  • Rengachary SS, Ellenbogen RG (2005) Principles of neurosurgery. Elsevier Mosby, Edingurgh

    Google Scholar 

  • Reyes LD Sherwood CC (2014) Neuroscience and human brain evolution. In: Bruner E (ed) Human paleoneurology, Springer, Berlin pp 95–120

    Google Scholar 

  • Rice SH (2002) The role of heterochrony in primate brain evolution. In: Minugh-Purvis N, McNamara KJ (eds) Human evolution through developmental change. The John Hopkins University Press, Baltimore, pp 154–170

    Google Scholar 

  • Rilling JK, Insel TR (1999) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37:191–223

    Article  Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Rohlf FJ (1993) Relative warp analysis and an example of its application to mosquito wings. In: Marcus LF, Bello E, García-Valdecasas A (eds) Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales, Madrid, pp 131–159

    Google Scholar 

  • Rosenberg K, Trevathan W (2002) Birth, obstetrics and human evolution. BJOG 109:1199–1206

    Article  Google Scholar 

  • Rosenberg KR, Trevathan W (1996) Bipedalism and human birth: the obstetrical dilemma revisited. Evol Anthropol Issues News Rev 4:161–168

    Article  Google Scholar 

  • Rosenberg KR, Trevathan WR (2001) The evolution of human birth. Sci Am 285:72–77

    Article  Google Scholar 

  • Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176

    Article  Google Scholar 

  • Schoenemann PT, Budinger TF, Sarich VM, Wang WSY (2000) Brain size does not predict general cognitive ability within families. Proc Natl Acad Sci USA 97:4932

    Article  Google Scholar 

  • Schultz AH (1940) Growth and development of the chimpanzee. Contrib Embryol 28:1–63

    Google Scholar 

  • Schultz AH (1941) The relative size of the cranial capacity in primates. Am J Phys Anthropol 28:273–287

    Article  Google Scholar 

  • Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, Courchesne E (2010) Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30:4419–4427

    Article  Google Scholar 

  • Sear R, Mace R (2008) Who keeps children alive? A review of the effects of kin on child survival. Evol Hum Behav 29:1–18

    Article  Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

    Article  Google Scholar 

  • Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212:426–454

    Article  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Smith TM (2004) Incremental development of primate dental enamel. Ph.D. thesis, Stony Brook University

    Google Scholar 

  • Smith BH, Tompkins RL (1995) Toward a life history of the Hominidae. Annu Rev Anthropol 24:257–279

    Article  Google Scholar 

  • Smith TM (2006) Experimental determination of the periodicity of incremental features in enamel. J Anat 208:99–113

    Article  Google Scholar 

  • Smith TM, Tafforeau P, Reid DJ, Pouech J, Lazzari V, Zermeno JP, Guatelli-Steinberg D, Olejniczak AJ, Hoffman A, Radovcic J, Makaremi M, Toussaint M, Stringer C, Hublin JJ (2010) Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proc Natl Acad Sci U S A 107:20923–20928

    Article  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    Article  Google Scholar 

  • Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004a) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231

    Article  Google Scholar 

  • Sowell ER, Thompson PM, Toga AW (2004b) Mapping changes in the human cortex throughout the span of life. Neuroscientist 10:372–392

    Article  Google Scholar 

  • Swisher CC, Curtis GH, Jacob T, Getty AG, Suprijo A, Widiasmoro S (1994) Age of the earliest known hominids in Java, Indonesia. Science 263:1118–1121

    Google Scholar 

  • Trevathan W (1987) Human birth: an evolutionary perspective. Aldine de Gruyter, New York

    Google Scholar 

  • Trevathan WR (1996) The evolution of bipedalism and assisted birth. Med Anthropol Q 10:287–290

    Article  Google Scholar 

  • Vannucci RC, Barron TF, Holloway RL (2011) Craniometric ratios of microcephaly and LB1, Homo floresiensis, using MRI and endocasts. Proc Natl Acad Sci USA 103:13421–13426

    Google Scholar 

  • Vinicius L (2005) Human encephalization and developmental timing. J Hum Evol 49:762–776

    Article  Google Scholar 

  • Von Koenigswald GHR (1936) Ein fossiler Hominide aus dem Altpleistocän Ostjavas. De Ingenieur in Nederlandsch-Indië, Mijnbouw and Geologie, De Mijningenieur 4:149–157

    Google Scholar 

  • Vrba ES (1998) Multiphasic growth models and the evolution of prolonged growth exemplified by human brain evolution. J Theor Biol 190:227–239

    Article  Google Scholar 

  • Wanifuchi H, Shimizu T, Maruyama T (2002) Age-related changes in the proportion of intracranial cerebrospinal fluid space measured using volumetric computerized tomography scanning. J Neurosurg 97:607–610

    Article  Google Scholar 

  • Weaver TD, Hublin JJ (2009) Neandertal birth canal shape and the evolution of human childbirth. Proc Natl Acad Sci USA 106:8151–8156

    Article  Google Scholar 

  • Webb SJ, Nalty T, Munson J, Brock C, Abbott R, Dawson G (2007) Rate of head circumference growth as a function of autism diagnosis and history of autistic regression. J Child Neurol 22:1182–1190

    Article  Google Scholar 

  • Williams RW, Herrup K (1988) The control of neuron number. Annu Rev Neurosci 11:423–453

    Article  Google Scholar 

  • Wood B, Collard M (1999) The human genus. Science 284:65–71

    Article  Google Scholar 

Download references

Acknowledgements

I want to thank Emiliano Bruner and the team from the Centro Nacional de Investigación sobre la Evolución Humana, especially Chitina Moreno Torres and José Manuel de la Cuétara, the Instituto Tomás Pascual Sanz and the Fundación Española para la Ciencia y la Tecnología for the organization of the marvelous symposium “Human Paleoneurology.” Thanks for your invitation to Burgos and your hospitality. Furthermore, I want to thank all the participants of the symposium for the many interesting discussions. I am grateful to two anonymous referees, Emiliano Bruner, Philipp Gunz and Jean-Jacques Hublin for comments on this manuscript. This research was supported by EU FP6 Marie Curie Actions grant MRTN-CT-2005-019564 “EVAN” and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Neubauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Neubauer, S. (2015). Human Brain Evolution: Ontogeny and Phylogeny. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics