Skip to main content

Functional Craniology and Brain Evolution

  • Chapter
  • First Online:
Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

Abstract

Anatomy and morphometrics have been experiencing a new renaissance in recent decades due to the new techniques and computed methodology used in imaging and statistics. Following this revolution, anatomical systems are currently analyzed by investigating the relationships among their components, in ontogeny and phylogeny. Accordingly, evolution is no more interpreted in terms of single and independent traits, but through integrated patterns and more comprehensive processes. In this sense, paleoneurology should be interpreted as the study of the relationships between brain and braincase during evolution. Morphogenesis is based on the functional and structural relationships between soft and hard tissues. The bones of the braincase, the cerebral cortex, the vascular networks, the connective layers and the cerebrospinal fluid constitute a balanced morphogenetic complex which constrains and influences evolutionary changes. Within this network, the brain largely shapes the bones in the upper endocranial areas, while in the lower endocranial areas the reverse relationship is more likely, due to constraints associated with the facial block and with the cranial base. Most of the spatial changes described in hominid paleoneurology are associated with the fronto-parietal lateral expansion of the endocranial volumes, and modern humans display a further dilation of the whole parietal surface. The study of endocasts can only provide information on size and shape changes associated with the neurocranial morphology, and fields like histology and neuroanatomy are necessary to support robust evolutionary hypotheses. Integration with neuropsychology and other biomedical fields is furthermore necessary to evaluate possible relationships between brain spatial organization and functional topics, such as metabolism or cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton SC, Jaslow CR, Swartz SM (1992) Sutural complexity in artificially deformed human (Homo sapiens) crania. J Morphol 214:321–332

    Google Scholar 

  • Ardila A (2008) On the evolutionary origins of executive functions. Brain Cogn 68:92–99

    Google Scholar 

  • Balzeau A, Holloway RL, Grimaud-Hervé D (2012) Variations and asymmetries in regional brain surface in the genus Homo. J Hum Evol 62:696–706

    Google Scholar 

  • Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. Proc Natl Acad Sci USA 110:9001–9006

    Google Scholar 

  • Bastir M (2008) A systems-model for the morphological analysis of integration and modularity in human craniofacial evolution. J Anthropol Sci 86:37–58

    Google Scholar 

  • Bastir M, Rosas A (2005) Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128:26–34

    Google Scholar 

  • Bastir M, Rosas A (2006) Correlated variation between the lateral basicranium and the face: a geometric morphometric study in different human groups. Arc Oral Biol 51:814–824

    Google Scholar 

  • Bastir M, Rosas A (2009) Mosaic evolution of the basicranium in Homo and its relation to modular development. Evol Biol 36:57–70

    Google Scholar 

  • Bastir M, Rosas A, Kuroe K (2004) Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 123:340–350

    Google Scholar 

  • Bastir M, Rosas A, O’Higgins P (2006) Craniofacial levels and the morphological maturation of the human skull. J Anat 209:637–654

    Google Scholar 

  • Bastir M, Rosas A, Lieberman DE, O’Higgins P (2008) Middle craneal fossa and the origin of modern humans. Anat Rec 291:130–140

    Google Scholar 

  • Bastir M, Rosas A, Stringer C, Cuétara JM, Kruszynski R, Weber GW, Ross C, Ravosa MJ (2010) Effects of brain and facial size on basicranial form in human and primate evolution. J Hum Evol 58:424–431

    Google Scholar 

  • Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Comm 2:588

    Google Scholar 

  • Battaglia-Meyer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022

    Google Scholar 

  • Bertolizio G, Mason L, Bissonnette B (2011) Brain temperature: heat production, elimination and clinical relevance. Paediatr Anaesth 21:347–358

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bookstein F, Schafer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice DE, Rohlf FJ, Recheis W, Mariam AJ, Marcus LF (1999) Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat Rec 257:217–224

    Google Scholar 

  • Bookstein FL, Gunz P, Mitteroecker P, Prossinger H, Schaefer K, Seidler H (2003) Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44:167–187

    Google Scholar 

  • Brengelmann GL (1993) Specialized brain cooling in humans? FASEB J 7:1148–1153

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Google Scholar 

  • Bruner E (2008) Comparing endocranial form and shape differences in modern humans and Neandertal: a geometric approach. PaleoAnthropology 2008:93–106

    Google Scholar 

  • Bruner E (2010a) The evolution of the parietal cortical areas in the human genus: between structure and cognition. In Broadfield D, Yuan M, Schick K, Toth N (eds) Human brain evolving. The Stone Age Institute, Bloomington, pp 83–96

    Google Scholar 

  • Bruner E (2010b) Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthropol 51:S77–S88

    Google Scholar 

  • Bruner E (2014) Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 121–129

    Google Scholar 

  • Bruner E, Holloway R (2010) bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Google Scholar 

  • Bruner E, Jacobs HIL (2013) Alzheimer’s disease: the downside of a highly evolved parietal lobe? J Alzheimer’s Dis 35:227–240

    Google Scholar 

  • Bruner E, Jeffery N (2007) Extracting functional, phylogenetic and structural data from the subcortical brain: an exploratory geometric morphometric survey. J Anthropol Sci 85:125–138

    Google Scholar 

  • Bruner E, Manzi G (2005) CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy. Anat Rec 285A:643–658

    Google Scholar 

  • Bruner E, Pearson O (2013) Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121:31–41

    Google Scholar 

  • Bruner E, Ripani M (2008) A quantitative and descriptive approach to morphological variation of the endocranial base in modern humans. Am J Phys Anthropol 137:30–40

    Google Scholar 

  • Bruner E, Sherkat S (2008) The middle meningeal artery: from clinics to fossils. Childs Nerv Syst 24:1289–1298

    Google Scholar 

  • Bruner E, de la Cuétara JM, Holloway R (2011a) A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294:1548–1556

    Google Scholar 

  • Bruner E, Mantini S, Musso F, de la Cuétara JM, Ripani M, Sherkat S (2011b) The evolution of the meningeal vascular system in the human genus: from brain shape to thermoregulation. Am J Hum Biol 23:35–43

    Google Scholar 

  • Bruner E, De la Cuétara M, Musso F (2012) Quantifying patterns of endocranial heat distribution: brain geometry and thermoregulation. Am J Hum Biol 24:753–762

    Google Scholar 

  • Bruner E, Mantini S, Ripani M (2009) Landmark-based analysis of the morphological relationship between endocranial shape and traces of the middle meningeal vessels. Anat Rec 292:518–527

    Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neanderthal and modern lineages. Proc Natl Acad Sci USA 100:15335–15340

    Google Scholar 

  • Bruner E, Martin-Loeches M, Colom R (2010) Human midsagittal brain shape variation: patterns, allometry and integration. J Anat 216:589–599

    Google Scholar 

  • Bruner E, Saracino B, Passarello P, Ricci F, Tafuri M, Manzi G (2004) Midsagittal Cranial shape variation in the genus Homo by geometric morphometrics. Coll Antropol 28:99–112

    Google Scholar 

  • Bruner E, Mantini S, Perna A, Maffei C, Manzi G (2005) Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. Eur J Morphol 42:217–224

    Google Scholar 

  • Bruner E, Athreya S, De la Cuétara JM, Marks T (2013) Geometric variation of the frontal squama in the genus Homo: frontal bulging and the origin of modern human morphology. Am J Phys Anthropol 150:313–323

    Google Scholar 

  • Bruner E, de la Cuétara JM, Masters M, Amano H, Ogihara N (2014a) Functional craniology and brain evolution: from paleontology to biomedicine. Frontiers Neuroanat 8:19

    Google Scholar 

  • Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colom R, Jacobs HIL (2014b) Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224:367–376

    Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151

    Google Scholar 

  • Cabanac M (1993) Selective brain cooling in humans: ‘fancy’ or fact? FASEB J 7:1143–1146

    Google Scholar 

  • Cachel SM (1978) A functional analysis of the primate masticatory system and the origin of the anthropid postorbital septum. Am J Phys Anthropol 50:1–17

    Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1407

    Google Scholar 

  • Cashmore L (2009) Can hominin ‘handedness’ be accurately assessed? Ann Hum Biol 36:624–641

    Google Scholar 

  • Cashmore L, Uomini N, Chapelain A (2008) The evolution of handedness in humans and great apes: a review and current issues. J Anthropol Sci 86:7–35

    Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Google Scholar 

  • Chau A, Fung K, Pak K, Yap M (2004) Is eye size related to orbit size in human subjects? Ophthal Phys Opt 24:35–40

    Google Scholar 

  • Cheverud JM (1982) Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36:499–516

    Google Scholar 

  • Cheverud JM (1996) Developmental integration and the evolution of pleiotropy. Amer Zool 36:44–50

    Google Scholar 

  • Cheverud J, Wagner G, Dow M (1989) Methods for the comparative analysis of variation patterns. Sys Zool 38:201–213

    Google Scholar 

  • Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 2884:195–199

    Google Scholar 

  • Debnath J, Satija L, George RA, Vaidya A, Sen D (2009) Computed tomographic demonstration of unusual ossification of the falx cerebri: a case report. Surg Radiol Anat 31:211–213

    Google Scholar 

  • Di Ieva A, Bruner E, Davidson J, Pisano P, Haider T, Stone SS, Cusimano MD, Tschabitscher M, Grizzi F (2013) Cranial sutures: a multidisciplinary review. Childs Nerv Syst 29:893–905

    Google Scholar 

  • Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15:108–115

    Google Scholar 

  • Enlow DH (1990) Facial growth. WB Saunders Company, Philadelphia

    Google Scholar 

  • Esteve-Altava B, Marugán-Lobón J, Botella H, Bastir M, Rasskin-Gutman D (2013) Grist for Riedl’s Mill: a network model perspective on the integration and modularity of the human skull. J Exp Zool 9999:1–12

    Google Scholar 

  • Falk D (1983) Cerebral cortices of East African early hominids. Science 221:1072–1074

    Google Scholar 

  • Falk D (1987) Hominid paleoneurology. Ann Rev Anthropol 16:13–30

    Google Scholar 

  • Falk D, Zollikofer CP, Morimoto N, Ponce de León MS (2012) Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. Proc Natl Acad Sci USA 109:8467–8470

    Google Scholar 

  • Flaiano E (1956) Diario notturno. Bompiani, Milano

    Google Scholar 

  • García-González U, Cavalcanti DD, Agrawal A, Gonzalez LF, Wallace RC, Spetzler RF, Preul MC (2009) The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg Focus 27:E2

    Google Scholar 

  • Gómez-Robles A, Hopkins WD, Sherwood CC (2013) Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc Biol Sci. 280:20130575

    Google Scholar 

  • Grimaud-Hervé D (1997) L’évolution de l’encéphale chez l’Homo erectus et l’Homo sapiens. CNRS Eds, Paris

    Google Scholar 

  • Gunz P, Harvati K (2007) The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52:262–274

    Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98

    Google Scholar 

  • Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57:48–62

    Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922

    Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaentol Electronica 4:1–9

    Google Scholar 

  • Hauser G, De Stefano GF (1989) Epigenetic variants of the human skull. Schweizerbart, Stuttgart

    Google Scholar 

  • Henderson JH, Longaker MT, Carter DR (2004) Sutural bone deposition rate and strain magnitude during cranial development. Bone 34:271–280

    Google Scholar 

  • Herculano-Houzel S (2012) Neuronal scaling rules for primate brains: the primate advantage. Prog Brain Res 195:325–340

    Google Scholar 

  • Herring SW (2008) Mechanical influences on sutures development and patency. Front Oral Biol 12:41–56

    Google Scholar 

  • Herring SW, Teng S (2000) Strain in the braincase and its sutures during function. Am J Phys Anthropol 112:575–593

    Google Scholar 

  • Hershkovitz I, Greenwald C, Rothschild BM, Latimer B, Dutour O, Jellema LM, Wish-Baratz S, Pap I, Leonetti G (1999) The elusive diploic veins: anthropological and anatomical perspective. Am J Phys Anthropol 108:345–358

    Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol 210:411–417

    Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Comput Biol 2:e22

    Google Scholar 

  • Holloway RL (1981) Volumetric and asimmetry determinations on recent hominid endocasts: Spy I and Spy II, Djebel Ihroud I, and the Sale´ Homo erectus specimen. With some notes on Neandertal brain size. Am J Phys Anthropol 55:385–393

    Google Scholar 

  • Holloway RL (1995) Toward a synthetic theory of human brain evolution. In: Changeaux JP, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 42–54

    Google Scholar 

  • Holloway RL, De La Coste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    Google Scholar 

  • Jacobs HIL, Van Boxtel MPJ, Jolles J, Verhey FRJ, Uylings HBM (2012) Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 36:297–309

    Google Scholar 

  • Jivraj K, Bhargava R, Aronyk K, Quateen A, Walji A (2009) Diploic venous anatomy studied in vivo by MRI. Clin Anat 22:296–301

    Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–187

    Google Scholar 

  • Karbowski J (2009) Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size. J Comput Neurosci 27:415–436

    MathSciNet  Google Scholar 

  • Keller SS, Roberts N (2009) Measurement of brain volume using MRI: software, techniques, choices and prerequisites. J Anthropol Sci 87:127–151

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11:353–357

    Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Ogihara N, Hirai N, Matsumura G (2014a) Cerebral sulci and gyri observerd on macaque endocasts. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 131–137

    Google Scholar 

  • Kobayashi Y, Matsui T, Haizuka Y, Ogihara N, Hirai N, Matsumura G (2014b) The coronal suture as an indicator of the caudal border of the macaque monkey prefrontal cortex. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of learning in Neanderthals and modern humans, vol 2. Springer, Japan, pp 139–143

    Google Scholar 

  • Kochetkova VI (1978) Paleoneurology. Winston/Wiley, Washington

    Google Scholar 

  • Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, Chen L, Wang GZ, Luo R, Preuss TM, Geschwind DH (2012) Human-specific transcriptional networks in the brain. Neuron 75:601–617

    Google Scholar 

  • Kubo D, Tanabe HC, Kondo O, Ogihara N, Yogi A, Murayama S, Ishida H (2014) Cerebellar size estimation from endocranial measurements: an evaluation based on MRI data. In: Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds) Dynamics of Learning in Neanderthals and Modern Humans, vol 2. Springer, Japan, pp 209–215

    Google Scholar 

  • Kyrkanides S, Moore T, Miller JH, Tallents RH (2011) Melvin Moss’ function matrix theory revisited. Orthod Waves 70:1–7

    Google Scholar 

  • Langbroek M (2014) Ice age mentalists: debating neurological and behavioural perspectives on the Neandertal and modern mind. J Anthropol Sci 92 (in press)

    Google Scholar 

  • Lieberman DE, Ross C, Ravosa M (2000) The primate cranial base: ontogeny function and integration. Yrb Phys Anthropol 43:117–169

    Google Scholar 

  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA 99:1134–1139

    Google Scholar 

  • Magwene PM (2001) New tools for studying integration and modularity. Evolution 55:1734–1745

    Google Scholar 

  • Mak M, Kwan T, Cheng K, Chan R, Ho S (2006) Myopia as a latent phenotype of a pleiotropic gene positively selected for facilitating neurocognitive development, and the effects of environmental factors in its expression. Med Hypotheses 66:1209–1215

    Google Scholar 

  • Mantini D, Corbetta M, Romani GL, Orban GA, Vanduffel W (2012) Evolutionarily novel functional networks in the human brain? J Neurosci 33:3259–3275

    Google Scholar 

  • Manzi G (2003) ‘‘Epigenetic’’ cranial traits, Neandertals and the origin of Homo sapiens. Riv Antropol 81:57–68

    Google Scholar 

  • Manzi G, Vienna A (1997) Cranial non-metric traits as indicators of hypostosis or hyperostosis. Riv Antropol 75:41–61

    Google Scholar 

  • Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527

    Google Scholar 

  • Manzi G, Gracia A, Arsuaga JL (2000) Cranial discrete traits in the Middle Pleistocene humans from Sima de los Huesos (Sierra de Atapuerca, Spain). Does hypostosis represent any increase in “ontogenetic stress” along the Neandertal lineage? J Hum Evol 38:425–446

    Google Scholar 

  • Martínez-Abadías N, Mitteroecker P, Parsons TE, Esparza M, Sjøvold T, Rolian C, Richtsmeier JT, Hallgrímsson B (2012) The developmental basis of quantitative craniofacial variation in humans and mice. Evol Biol 39:554–567

    Google Scholar 

  • Martín-Loeches M, Bruner E, de la Cuétara JM, Colom R (2013) Correlation between corpus callosum shape and cognitive performance in healthy young adults. Brain Struct Funct 218:721–731

    Google Scholar 

  • Masters MP (2012) Relative size of the eye and orbit: an evolutionary and craniofacial constraint model for examining the etiology and disparate incidence of juvenile-onset myopia in humans. Med Hypoth 78:649–656

    Google Scholar 

  • McCarthy RC (2001) Anthropoid cranial base architecture and scaling relationships. J Hum Evol 40:41–66

    Google Scholar 

  • McCollum MA, Sherwood CC, Vinyard CJ, Lovejoy CO, Schachat F (2006) Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines. J Hum Evol 50:232–236

    Google Scholar 

  • Mitteroecker P, Bookstein FL (2007) The conceptual and statistical relationship between modularity and morphological integration. Syst Biol 56:818–836

    Google Scholar 

  • Mitteroecker P, Bookstein F (2008) The evolutionary role of modularity and integration in the hominoid cranium. Evolution 62:943–958

    Google Scholar 

  • Moss ML (1959) The pathogenesis of premature cranial synostosis in man. Acta Anat 37:351–370

    Google Scholar 

  • Moss ML (1968) A theoretical analysis of the functional matrix. Acta Biotheor 18:195–202

    MathSciNet  Google Scholar 

  • Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215:240–255

    Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566

    Google Scholar 

  • Nishitani N, Schurmann M, Amunts K, Hari R (2005) Broca’s region: from action to language. Physiology 20:60–69

    Google Scholar 

  • O’Laughlin VD (1996) Comparative endocranial vascular changes due to craniosynostosis and artificial cranial deformation. Am J Phys Anthropol 101:369–385

    Google Scholar 

  • Ogle RC, Tholpady SS, McGlynn KA, Ogle R (2004) Regulation of cranial suture morphogenesis. Cells Tissues Organs 176:54–66

    Google Scholar 

  • Olson EC, Miller RL (1958) Morphological integration. University of Chicago Press, Chicago

    Google Scholar 

  • Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44:2647–2667

    Google Scholar 

  • Pearce E, Stringer C, Dunbar RIM (2013) New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc R Soc B 280:20130168

    Google Scholar 

  • Peña-Melián A, Rosas A, García-Tabernero A, Bastir M, De La Rasilla M (2011) Paleoneurology of two new Neandertal occipitals from El Sidrón (Asturias, Spain) in the context of Homo endocranial evolution. Anat Rec 294:1370–1381

    Google Scholar 

  • Rango M, Arighi A, Bresolin N (2012) Brain temperature: what do we know? NeuroReport 23:483–487

    Google Scholar 

  • Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ (2006) Surgical anatomy of microneurosurgical sulcal key-points. Neurosurgery 59:S177–S208

    Google Scholar 

  • Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006) Phenotypic integration of neurocranium and brain. J Exp Zool 306B:360–378

    Google Scholar 

  • Rilling JK (2006) Human and non-human primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15:65–67

    Google Scholar 

  • Rilling JK (2008) Neuroscientific approaches and applications within anthropology. Am J Phys Anthropol S47:2–32

    Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132

    Google Scholar 

  • Rohlf JF (2007) tpsRelw 1.45. TpsSeries. Department of ecology and evolution. SUNY, Stony Brook, New York

    Google Scholar 

  • Rohlf JF (2004) tpsSuper 1.14. Department of ecology and evolution. SUNY, Stony Brook, New York

    Google Scholar 

  • Rosas A, Bastir M (2002) Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol 117:236–245

    Google Scholar 

  • Ross CF (1995) Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J Hum Evol 29:201–227

    Google Scholar 

  • Saban R (1995) Image of the human fossil brain: endocranial casts and meningeal vessels in young and adult subjects. In: Changeaux P, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 11–38

    Google Scholar 

  • Schlosser G (2004) The roles of modules in development and evolution. In: Schlosser G, Wagner GP (eds) Modularity in development and evolution. The University of Chicago Press, Chicago and London, pp 519–582

    Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    Google Scholar 

  • Schultz AH (1940) The size of the orbit and of the eye in primates. Am J Phys Anthropol 26:389–408

    Google Scholar 

  • Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    Google Scholar 

  • Sergi S (1934) Ossicini fontanellari della regione del lambda nel cranio di Saccopastore e nei crani neandertaliani. Riv Antropol 30:101–112

    Google Scholar 

  • Sergi S (1944) Craniometria e craniografia del primo paleantropo di Saccopastore. Ricerche di Morfologia 20–21:733–791

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Slice DE (2004) Modern morphometrics in physical anthropology. Kluwer Academic—Plenum Publishers, New York

    Google Scholar 

  • Smaers JB (2013) How humans stand out in frontal lobe scaling. Proc Natl Acad Sci USA 110:E3682

    Google Scholar 

  • Sotero RC, Iturria-Medina Y (2011) From blood oxygenation level dependent (BOLD) signals to brain temperature maps. B Math Biol 73:2731–2747

    MathSciNet  Google Scholar 

  • Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197:61–76

    Google Scholar 

  • Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, Bridges CR, Shrager JB, Minugh-Purvis N, Mitchell MA (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418

    Google Scholar 

  • Thompson D’AW (1942) On growth and form. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tobias PV (1987) The brain of Homo habilis: a new level of organization in cerebral evolution. J Hum Evol 16:741–761

    Google Scholar 

  • Tobias PV (1995) The brain of the first hominids. In: Changeaux JP, Chavaillon J (eds) Origins of the human brain. Clarendon Press, Oxford, pp 61–83

    Google Scholar 

  • Todd T, Beecher H, Williams G, Todd A (1940) The weight and growth of the human eyeball. Hum Biol 12:1–20

    Google Scholar 

  • Toriumi H, Shimizu T, Shibata M, Unekawa M, Tomita Y, Tomita M, Suzuki N (2011) Developmental and circulatory profile of the diploic veins. Microvasc Res 81:97–102

    Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913

    Google Scholar 

  • Tubbs RS, Kelly DR, Lott R, Salter EG, Oakes WJ (2006) Complete ossification of the human falx cerebri. Clin Anat 19:147–150

    Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Google Scholar 

  • Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert A, Todd JT, Orban GA (2002) Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 298:413–415

    Google Scholar 

  • Waitzman AA, Posnick JC, Armstrong DC, Pron GE (1992) Craniofacial skeletal measurements based on computed tomography: Part II. Normal values and growth trends. Cleft Palate Craniofac J 29:118–128

    Google Scholar 

  • Weale RA (1982) A biography of the eye: development, growth, age. H. K. Lewis, London

    Google Scholar 

  • Weaver AH (2005) Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci USA 102:3576–3580

    Google Scholar 

  • Weidenreich F (1936) Observations on the form and proportions of the endocranial casts of Sinanthropus pekinensis, other hominids and the great apes: a comparative study of brain size. Paleontological Sinica Ser D7:Fasc 4

    Google Scholar 

  • Weidenreich F (1941) The brain and its role in the phylogenetic transformation of the human skull. Trans Am Phil Soc XXXI:321–442

    Google Scholar 

  • Zelditch ML, Swidersky DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists. Elsevier, San Diego

    MATH  Google Scholar 

  • Zhu M, Ackerman JJH, Sukstanskii AL, Yablonskiy DA (2006) How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J Appl Physiol 101:1481–1488

    Google Scholar 

  • Zollikofer CP, Ponce De León MS (2002) Visualizing patterns of craniofacial shape variation in Homo sapiens. Proc Biol Sci. 269:801–807

    Google Scholar 

  • Zollikofer CPE, Ponce de León MS (2005) Virtual reconstruction: a primer in computer-assisted paleontology and biomedicine. Wiley-Liss, New York

    Google Scholar 

  • Zollikofer CP, De León MS (2013) Pandora’s growing box: inferring the evolution and development of hominin brains from endocasts. Evol Anthropol 22:20–33

    Google Scholar 

  • Zollikofer CP, Weissmann JD (2011) A bidirectional interface growth model for cranial interosseous suture morphogenesis. J Anat 219:100–114

    Google Scholar 

Download references

Acknowledgments

The research studies presented in this review are funded by the Spanish Government, the Junta of Castilla y León, and the Italian Institute of Anthropology. I am grateful to Aida Gómez and José Manuel de la Cuétara for their constant comments and help. Chet Sherwood and Simon Neubauer provided helpful comments and suggestions on this manuscript. I also thank Fred Coolidge, Leee Overmann, Ralph Holloway, Philipp Gunz, Natalie Uomini, Sheela Athreya, Heidi Jacobs, Hana Pisova, Sofia Pedro, Gizéh Rangel de Lázaro, Markus Bastir, Giorgio Manzi, Manuel Martin-Loeches, Roberto Colóm, Naomichi Ogihara, and Michael Masters for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Bruner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruner, E. (2015). Functional Craniology and Brain Evolution. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics