Skip to main content

Computed Tools for Paleoneurology

  • Chapter
  • First Online:
Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

Abstract

The availability of computed tomographic (CT) scans of fossil crania has opened a new chapter in paleoneurology. CT scans have made it possible to create virtual imprints of the braincase—so called endocasts—on the computer, even when the endocranial cavity is filled with stone matrix. CT data have also become invaluable for reconstructing partially complete or damaged fossils. Recent methodological advancements have made it possible to analyse endocranial shape using multivariate statistics and study the evolution and development of the endocranium quantitatively. Here I review (1) methods for quantifying endocranial shape, and (2) techniques of virtual fossil reconstruction. I show how these novel methods can be applied in paleoneurology, and discuss advantages and limitations of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71(1):5–16

    Article  Google Scholar 

  • Bastir M, Rosas A, Gunz P, Peña-Melian A, Manzi G, Harvati K, Kruszynski R, Stringer C, Hublin JJ (2011) Evolution of the base of the brain in highly encephalized human species. Nat Commun 2:588

    Google Scholar 

  • Benazzi S, Bookstein FL, Strait DS, Weber GW (2011) A new OH5 reconstruction with an assessment of its uncertainty. J Hum Evol 61(1):75–88

    Article  Google Scholar 

  • Bookstein FL (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11:567–585

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bookstein FL (1996) Combining the tools of geometric morphometrics. Advances in morphometrics. Plenum Press, New York, pp 131–151

    Google Scholar 

  • Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1(3):225–243

    Article  Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47(5):279–303

    Article  Google Scholar 

  • Bruner E, Mantini S, Ripani M (2009) Landmark-based analysis of the morphological relationship between endocranial shape and traces of the middle meningeal vessels. Anat Rec (Hoboken) 292(4):518–527

    Article  Google Scholar 

  • Bruner E, Manzi G (2007) Landmark-based shape analysis of the archaic Homo calvarium from Ceprano (Italy). Am J Phys Anthropol 132(3):355–366

    Article  Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci USA 100(26):15335–15340

    Article  Google Scholar 

  • Bruner E, Saracino B, Ricci F, Tafuri M, Passarello P, Manzi G (2004) Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. Coll Antropol 28(1):99–112

    Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, Australopithecus sediba. Science 333(6048):1402–1407

    Article  Google Scholar 

  • Conroy GC, Falk D, Guyer J, Weber GW, Seidler H, Recheis W (2000) Endocranial capacity in Sts 71 (Australopithecus africanus) by three-dimensional computed tomography. Anat Rec 258(4):391–396

    Article  Google Scholar 

  • Conroy GC, Weber GW, Seidler H, Tobias PV (1999) Endocranial capacity of early hominids. Science 283(5398):9

    Google Scholar 

  • Conroy GC, Weber GW, Seidler H, Tobias PV, Kane A, Brunsden B (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280(5370):1730

    Article  Google Scholar 

  • Coqueugniot H, Hublin JJ (2012) Age-related changes of digital endocranial volume during human ontogeny: results from an osteological reference collection. Am J Phys Anthropol 147(2):312–318

    Article  Google Scholar 

  • Dart RA (1925) Australopithecus africanus: the man-ape of South Africa. Nature 115:195–199

    Article  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, Chichester

    MATH  Google Scholar 

  • Durrleman S, Pennec X, TrouvĂ© A, Ayache N, Braga J (2012) Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J Hum Evol 62(1):74–88

    Article  Google Scholar 

  • Falk D (1980) A reanalysis of the South African australopithecine natural endocasts. Am J Phys Anthropol 53(4):525–539

    Article  MathSciNet  Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308(5719):242–245

    Google Scholar 

  • Goodall C (1991) Procrustes methods in the statistical analysis of shape. J Roy Stat Soc B 53(2):285–339

    MATH  MathSciNet  Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Pyschometrika 40:33–51

    Article  MATH  MathSciNet  Google Scholar 

  • Grine FE, Gunz P, Betti-Nash L, Neubauer S, Morris AG (2010) Reconstruction of the Late Pleistocene human skull from Hofmeyr, South Africa. J Hum Evol 59:1–15

    Article  Google Scholar 

  • Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic/Plenum Publishers, New York, pp 73–98

    Chapter  Google Scholar 

  • Gunz P, Mitteroecker P, Neubauer S, Weber GW, Bookstein FL (2009) Principles for the virtual reconstruction of hominin crania. J Hum Evol 57(1):48–62

    Article  Google Scholar 

  • Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin JJ (2012) A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J Hum Evol 62:300–313

    Article  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20(21):R921–R922

    Article  Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2011) Virtual reconstruction of the Le Moustier 2 newborn skull. Implications for Neandertal ontogeny. PALEO 22:155–172

    Google Scholar 

  • Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Ital J Mammal 24(1):103–109. doi:10.4404/hystrix-24.1-6292

  • Holloway RL (1975) Early hominid endocasts: volumes, morphology and significance for hominid evolution. In: Tuttle R (ed) Primate functional morphology and evolution. Mouton Publishers, The Hague, pp 393–416

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: brain endocasts, The paleoneurological evidence. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36(2):235–247

    Article  Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215(3):240–255

    Article  Google Scholar 

  • Neubauer S, Gunz P, Mitteroecker P, Weber GW (2004) Three-dimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37/38. Can Assoc Radiol J 55(4):271–278

    Google Scholar 

  • Neubauer S, Gunz P, Weber GW, Hublin JJ (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62(4):498–510

    Article  Google Scholar 

  • Ponce de LeĂłn MS, Golovanova L, Doronichev V, Romanova G, Akazawa T, Kondo O, Ishida H, Zollikofer CP (2008) Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci USA 105(37):13764–13768

    Article  Google Scholar 

  • Richtsmeier JT, DeLeon VB, Lele SR (2002) The promise of geometric morphometrics. Am J Phys Anthropol Suppl 35:63–91

    Article  Google Scholar 

  • Rohlf FJ, Marcus LF (1993) A revolution in morphometries. Trends Ecol Evol 8(4):129–132

    Article  Google Scholar 

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Schoenemann PT, Gee J, Avants B, Holloway RL, Monge J, Lewis J (2007) Validation of plaster endocast morphology through 3D CT image analysis. Am J Phys Anthropol 132(2):183–192

    Article  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Article  Google Scholar 

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Vis Comput 23(9–11):743–751

    Article  Google Scholar 

  • Tobias PV (2001) Re-creating ancient hominid virtual endocasts by CT-scanning. Clin Anat 14(2):134–141

    Article  MathSciNet  Google Scholar 

  • Weber GW, Bookstein FL (2011) Virtual anthropology : a guide to a new interdisciplinary field, Wien. Springer, London

    Book  Google Scholar 

  • Weber GW, Gunz P, Neubauer S, Mitteroecker P, Bookstein FL (2012) Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation. In: Reynolds SC, Gallagher A (eds) African genesis: perspectives on hominin evolution. Cambridge University Press, Cambridge, pp 298–316

    Google Scholar 

  • Zollikofer CPE, Ponce de LeĂłn MS (2005) Virtual reconstruction : a primer in computer-assisted paleontology and biomedicine. Wiley-Interscience, Hoboken

    Google Scholar 

Download references

Acknowledgements

I am grateful to Emiliano Bruner and the team from the Centro Nacional de Investigación sobre la Evolución Humana for organizing and hosting the workshop “Human Paleoneurology” and for inviting me to contribute to this book. I want to thank Jean-Jacques Hublin for his support, Simon Neubauer and Nadia Scott for creating the endocranial segmentions shown in the figures of this chapter, and all workshop participants for stimulating discussions. I thank the Institute for Human Evolution at Witwatersrand University (Johannesburg) for allowing CT-scanning of the Taung fossil shown in Figs. 3.1 and 3.3, and I am grateful to Lubov Golovanova and Vladimir Doronichev for providing access to the fossil shown in Fig. 3.8. This research was funded by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Gunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gunz, P. (2015). Computed Tools for Paleoneurology. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics