Skip to main content

Neuroscience and Human Brain Evolution

  • Chapter
  • First Online:
Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

Abstract

Evidence from comparative neurobiological studies indicates that humans differ from other primates along several different dimensions of brain organization. Differences in cytoarchitecture, connectivity, and gene expression demonstrate that substantial remodeling of brain microstructure and molecular biology occurred during human evolution, and these changes are likely associated with cognitive specializations. The paleoneurological study of brain reorganization, however, has often been considered only on a larger scale, since the evidence from endocasts is limited to brain regions that can be detected from the traces left in the fossil record. Neuroscience offers a critical perspective on paleoneurology by investigating the microstructure and genetic mechanisms that might be responsible for brain reorganization. Recent findings suggest that neural tissue differs in its anatomical structure and molecular biology across primate species and is not uniform in its processing capabilities. Connectivity patterns can differ across species, producing selective enlargement of connected brain regions. Changes in patterns of innervation for various neurotransmitters may also occur on a microscopic scale, but can produce substantial changes in brain function and cognition. Furthermore, differential regulation of various transcription factors and genes can produce variation in the size of brain structures across primate species. Although the exact nature of brain reorganization related to the evolution of cognitive processing in humans remains to be fully defined, these findings indicate that it may have occurred through a number of different pathways. Further research in both neuroscience and paleoneurology is necessary to identify areas where brain reorganization likely occurred, along with the underlying mechanisms of evolutionary change in human brain structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Struct Funct 214:495–517

    Google Scholar 

  • Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin JM, Park S, Goubert V, Hof PR (2011) The von economo neurons in frontoinsular and anterior cingulate cortex. Ann NY Acad Sci 1225:59–71

    Google Scholar 

  • Babbitt CC, Fedrigo O, Pfefferle AD, Boyle AP, Horvath JE, Furey TS, Wray GA (2010) Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain. Genome Biol Evol 2:67–79

    Google Scholar 

  • Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, Ramnani N (2010) Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage 49:2045–2052

    Google Scholar 

  • Balzeau A, Holloway RL, Grimaud-Hervé D (2012) Variations and asymmetries in regional brain surface in the genus homo. J Hum Evol 62:696–706

    Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Google Scholar 

  • Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. Proc Natl Acad Sci USA 110(22):9001–9006

    Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17(1):353–362

    Google Scholar 

  • Bishop KM, Goudreau G, O’Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349

    Google Scholar 

  • Bond J, Woods CG (2006) Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18:95–101

    Google Scholar 

  • Bruner E, La Cuétara D, Manuel J, Holloway R (2011) A bivariate approach to the variation of the parietal curvature in the genus homo. Anat Rec 294:1548–1556

    Google Scholar 

  • Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus Homo. J Hum Evol 58:138–146

    Google Scholar 

  • Bruner E, Manzi G, Arsuaga JL (2003) Encephalization and allometric trajectories in the genus homo: evidence from the neandertal and modern lineages. Proc Natl Acad Sci USA 100:15335–15340

    Google Scholar 

  • Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    Google Scholar 

  • Bruner E (2008) Comparing endocranial form and shape differences in modern humans and Neandertals: a geometric approach. PaleoAnthropol 2008:93–106

    Google Scholar 

  • Bruner E (2010) Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthr 51:S77–S88

    Google Scholar 

  • Bush EC, Allman JM (2004) The scaling of frontal cortex in primates and carnivores. Proc Natl Acad Sci USA 101:3962–3966

    Google Scholar 

  • Butti C, Santos M, Uppal N, Hof PR (2013) Von economo neurons: clinical and evolutionary perspectives. Cortex 49:312–326

    Google Scholar 

  • Butti C, Sherwood CC, Hakeem AY, Allman JM, Hof PR (2009) The total number and volume of von economo neurons in the cerebral cortex of cetaceans. J. Comp. Neurol. 515:243–259

    Google Scholar 

  • Buxhoeveden D, Lefkowitz W, Loats P, Armstrong E (1996) The linear organization of cell columns in human and nonhuman anthropoid Tpt cortex. Anat Embryol (Berl) 194:23–36

    Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain 125:935–951

    Google Scholar 

  • Buxhoeveden DP, Switala AE, Roy E, Litaker M, Casanova MF (2001) Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol 115:361–371

    Google Scholar 

  • Cáceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035

    Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T, De Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, australopithecus sediba. Science 333:1402–1407

    Google Scholar 

  • Casanova MF, Trippe J II, Tillquist C, Switala AE (2009) Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes. J Anat 214:226–234

    Google Scholar 

  • Chance SA, Sawyer EK, Clover LM, Wicinski B, Hof PR, Crow TJ (2013) Hemispheric asymmetry in the fusiform gyrus distinguishes Homo sapiens from chimpanzees Brain Struct Funct Early view. vol. 218, pp. 1391–1405

    Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Google Scholar 

  • Cholfin JA, Rubenstein JLR (2007) Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 104:7652–7657

    Google Scholar 

  • Cholfin JA, Rubenstein JLR (2008) Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 509:144–155

    Google Scholar 

  • Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131

    Google Scholar 

  • Colombo JA, Gayol S, Yañez A, Marco P (1997) Immunocytochemical and electron microscope observations on the astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48:352–357

    Google Scholar 

  • Colombo JA, Schleicher A, Zilles K (1999) Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of new world monkeys. Glia 25:85–92

    Google Scholar 

  • Colombo JA, Fuchs E, Härtig W, Marotte LR, Puissant V (2000) “Rodent-like” and “primate-like” types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study. Anat Embryol (Berl) 201:111–120

    Google Scholar 

  • Conroy GC, Smith RJ (2007) The size of scalable brain components in the human evolutionary lineage: with a comment on the paradox of homo floresiensis. Homo-J Comp Hum Biol 58:1–12

    Google Scholar 

  • de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR (2010) Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex 20(4):966–981

    Google Scholar 

  • Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, Bruckner MK, Schreiweis C, Winter C et al (2009) A humanized version of FOXP2 affecs cortico-basal ganglia circuits in mice. Cell 137:961–971

    Google Scholar 

  • Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, Monaco AP, Paabo S (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418:869–872

    Google Scholar 

  • Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT (2004) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13:489–494

    Google Scholar 

  • Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT (2005) Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309:1717–1720

    Google Scholar 

  • Evans PD, Mekel-Bobrov N, Vallender EJ, Hudson RR, Lahn BT (2006) Evidence that the adaptive allele of the brain size gene microcephalin introgressed into homo sapiens from an archaic homo lineage. Proc Natl Acad Sci USA 103:18178–18183

    Google Scholar 

  • Evrard HC, Forro T, Logothetis NK (2012) Von Economo neurons in the anterior insula of the macaque monkey. Neuron 74:482–489

    Google Scholar 

  • Fajardo C, Escobar MI, Arteaga G, Umbarila J, Casanova MF, Pimienta H (2008) Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans. Neurosci Lett 435:215–218

    Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, et al (2005) The Brain of LB1, Homo floresiensis. Science 308:242–245

    Google Scholar 

  • Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Wayhu Saptomo E, Prior F (2009) LB1’s virtual endocast, microcephaly, and hominin brain evolution. J Hum Evol 57:597–607

    Google Scholar 

  • Falk D (1980) A reanalysis of the South African australopithecine natural endocasts. Am J Phys Anthropol 53:525–539

    MathSciNet  Google Scholar 

  • Falk D (1983) The taung endocast: a reply to holloway. Am J Phys Anthropol 60:479–489

    Google Scholar 

  • Falk D (1985a) Apples, oranges, and the lunate sulcus. Am J Phys Anthropol 67:313–315

    Google Scholar 

  • Falk D (1985b) Hadar AL 162-28 endocast as evidence that brain enlargement preceded cortical reorganization in hominid evolution. Nature 313:45–47

    Google Scholar 

  • Falk D (1989) Ape-like endocast of “ape-man” Taung. Am J Phys Anthropol 80:335–339

    Google Scholar 

  • Falk D (2009) The natural endocast of taung (Australopithecus africanus): insights from the unpublished papers of raymond arthur dart. Am J Phys Anthropol 140:49–65

    Google Scholar 

  • Falk D (2012) Hominin paleoneurology: where are we now? In: Hofman MA, Falk D (eds). Evolution of the primate brain. Vol. 195. Progress in Brain Research. New York: Elsevier Science. p 255–272

    Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074

    Google Scholar 

  • Fukuchi-Shimogori T, Grove EA (2003) Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6:825–831

    Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610

    Google Scholar 

  • Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184

    Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119(2):593–609

    Google Scholar 

  • Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19(6):1239–1255

    Google Scholar 

  • Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex 18(11):2471–2482

    Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325

    Google Scholar 

  • Gunz P, Neubauer S, Maureille B, Hublin JJ (2010) Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20(21):R921–R922

    Google Scholar 

  • Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin JJ (2012) A uniquely modern human pattern of endocranial development. Insights from a cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J Hum Evol 62(2):300–313

    Google Scholar 

  • Hakeem AY, Sherwood CC, Bonar CJ, Butti C, Hof PR, Allman JM (2009) Von Economo neurons in the elephant brain. Anat Rec 292:242–248

    Google Scholar 

  • Hawks J, Hunley K, Lee SH, Wolpoff MH (2000) Population bottlenecks and pleistocene human evolution. Mol Biol Evol 17:2–22

    Google Scholar 

  • Hecht EE, Gutman DA, Preuss TM, Sanchez MM, Parr LA, Rilling JK (2013) Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. Cereb Cortex 23(5):1014–1024

    Google Scholar 

  • Heikinheimo M, Lawshé A, Shackleford GM, Wilson DB, MacArthur CA (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 48:129–138

    Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598

    Google Scholar 

  • Hickok G (2009) The functional neuroanatomy of language. Phys Life Rev 6:121–143

    Google Scholar 

  • Hofman MH (1983) Encephalization in hominids: evidence for the model of punctualism. Brain Behav Evol 22:102–117

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2003) Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution. Anat Rec 273:594–602

    Google Scholar 

  • Holloway RL, Clarke RJ, Tobias PV (2004) Posterior lunate sulcus in australopithecus africanus: was dart right? C R Palevol 3:287–293

    Google Scholar 

  • Holloway RL, Shapiro JS (1992) Relationship of squamosal suture to asterion in pongids (Pan): relevance to early hominid brain evolution. Am J Phys Anthropol 89:275–282

    Google Scholar 

  • Holloway RL (1968) The evolution of the primate brain: some aspects of quantitative relations. Brain Res 7:121–172

    Google Scholar 

  • Holloway RL (1981a) Revisiting the South African Taung australopithecine endocast: The position of the lunate sulcus as determined by the stereoplotting technique. Am J Phys Anthropol 56:43–58

    Google Scholar 

  • Holloway RL (1981b) Volumetric and asymmetry determinations on recent hominid endocasts: Spy I and II, Djebel Ihroud I, and the sale Homo erectus specimens, with some notes on Neandertal brain size. Am J Phys Anthropol 55:385–393

    Google Scholar 

  • Holloway RL (1983) Cerebral brain endocast pattern of Australopithecus afarensis hominid. Nature 303:420–422

    Google Scholar 

  • Holloway RL (1984) The Taung endocast and the lunate sulcus: a rejection of the hypothesis of its anterior position. Am J Phys Anthropol 64:285–287

    Google Scholar 

  • Holloway RL (1988) Some additional morphological and metrical observations on pan brain casts and their relevance to the taung endocast. Am J Phys Anthropol 77:27–33

    Google Scholar 

  • Holloway RL (1992) The failure of the gyrification index (GI) to account for volumetric reorganization in the evolution of the human brain. J Hum Evol 22:163–170

    Google Scholar 

  • Holloway RL (2002) Brief communicationl how much larger is the relative volume of area 10 of the prefrontal cortex in humans? Am J Phys Anthropol 118:399–401

    Google Scholar 

  • Holloway RL (2008) The human brain evolving: a personal retrospective. Annu Rev Anthr 37:1–19

    Google Scholar 

  • Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, Menzel C, Liang H, Yang H et al (2011) MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet 7:e1002327

    Google Scholar 

  • Husein M, Nachev P (2007) Space and the parietal cortex. Trends Cogn Sci 11(1):30–36

    Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–2528

    Google Scholar 

  • Inoue T, Tanaka T, Suzuki SC, Takeichi M (1998) Cadherin-6 in the developing mouse brain: expression along restricted connection systems and synaptic localization suggest a potential role in neuronal circuitry. Dev Dyn 211:338–351

    Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York

    Google Scholar 

  • Jerison HJ (1979) Brain, body and encephalization in early primates. J Hum Evol 8:615–635

    Google Scholar 

  • Kaufman JA, Paul LK, Kaufman KF, Granstedt AE, Hof PR, Hakeem AY, Allman JM (2008) Selective reduction of von economo neuron number in agenesis of the corpus callosum. Acta Neuropathol (Berl) 116:479–489

    Google Scholar 

  • Keysers C, Gazzola V (2010) Social neuroscience: mirror neurons recorded in humans. Curr Biol 20(8):R353–R354

    Google Scholar 

  • Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Pääbo S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–1854

    Google Scholar 

  • Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do HH, Weiss G et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473

    Google Scholar 

  • Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, DeArmond SJ, Seeley WW (2012) Selective frontoinsular von economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cereb Cortex 22:251–259

    Google Scholar 

  • Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, Peng S, Preuss TM, Wohlschlegel JA et al (2009) Human-specific transcriptional regulation of development genes by FOXP2. Nature 462:213–217

    Google Scholar 

  • Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, Hublin J, Hanni C, Fortea J et al (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 17:1908–1912

    Google Scholar 

  • Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453

    Google Scholar 

  • Krubitzer L (1995) The organization of neocortex in mammals: are species differences really so different? Trends Neurosci 18:408–417

    Google Scholar 

  • Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S, Yuan Y, He L, Oleksiak A et al (2012) Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 22:611–622

    Google Scholar 

  • Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo. DT-MRI Study Cereb Cortex 15(6):854–869

    Google Scholar 

  • Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT (2005) Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309:1720–1722

    Google Scholar 

  • Mekel-Bobrov N, Posthuma D, Gilbert SL, Lind P, Gosso MF, Luciano M, Harris SE, Bates TC, Polderman TJC et al (2007) The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Hum Mol Genet 16:600–608

    Google Scholar 

  • Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI (2011) Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol 28:625–638

    Google Scholar 

  • Montgomery SH, Mundy NI (2012) Evolution of ASPM is associated with both increases and decreases in brain size in primates. Evolution 66:927–932

    Google Scholar 

  • Moore MW, Sutikna T, Jatmiko, Morwood MJ, Brumm A (2009) Continuities in stone flaking technology at Liang Bua, Flores, Indonesia. J Hum Evol 57:503–526

    Google Scholar 

  • Morwood MJ, Brown P, Jatmiko, Sutikna T, Saptomo EW, Westaway KE, Due RA, Roberts RG, Maeda T, et al (2005) Further evidence for small-bodied hominins from the late pleistocene of flores. Nature 437:1012–1017

    Google Scholar 

  • Muzio L, Mallamaci A (2003) Emx1, emx2 and pax6 in specification, regionalization and arealization of the cerebral cortex. Cereb Cortex 13:641–647

    Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2009) Endocranial shape changes during rowth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59(5):555–566

    Google Scholar 

  • Neubauer S, Gunz P, Hublin JJ (2010) The pattern of endocranial ontogenetic shape changes in humans. J Anat 215(3):240–255

    Google Scholar 

  • Nimchinsky EA, Gilissen E, Allman JM, Perl DP, Erwin JM, Hof PR (1999) A neuronal morphologic type unique to humans and great apes. Proc Natl Acad Sci USA 96:5268–5273

    Google Scholar 

  • O’Leary DDM, Nakagawa Y (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol 12:14–25

    Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287

    Google Scholar 

  • Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Google Scholar 

  • Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci USA 103:17973–17978

    Google Scholar 

  • Preuss TM, Coleman GQ (2002) Human specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cereb Cortex 12:671–691

    Google Scholar 

  • Preuss TM, Qi H, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96:11601–11606

    Google Scholar 

  • Preuss TM (2012) Human brain evolution: from gene discovery to phenotype discovery. Proc Natl Acad Sci USA Early view

    Google Scholar 

  • Raghanti MA, Spocter MA, Butti C, Hof PR, Sherwood CC (2010) A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Front Neuroanat 4:1–10

    Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008a) Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys. J Comp Neurol 506:409–424

    Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008b) Differences in cortical serotonergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Cereb Cortex 18:584–597

    Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008c) Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Neuroscience 155:203–220

    Google Scholar 

  • Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58

    Google Scholar 

  • Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2012) Continuity, divergence, and the evolution of brain language pathways. Front Neuroanat 3:1–6

    Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TE (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Google Scholar 

  • Rilling JK, Seligman RA (2002) A quantitative morphometric comparative analysis of the primate temporal lobe. J Hum Evol 42:505–533

    Google Scholar 

  • Rilling JK (2006) Noninvasive neuroimaging techniques for the study of primate brain development. In: Sackett GP, Ruppentahal GC, Elias K (eds) Nursery rearing of nonhuman primates in the 21st Century. Developments in Primatology: Progress and Prospects. Springer, New York, p 485–511

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann. Rev Neurosci 27(1):169–192

    Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of movement. Cogn Brain Res 3(2):131–141

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Google Scholar 

  • Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) Von economo neurons in autism: a stereological study of the frontoinsular cortex in children. Brain Res 1380:206–217

    Google Scholar 

  • Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comp Neurol 510:117–128

    Google Scholar 

  • Schleicher A, Zilles K (1990) A quantitative approach to cytoarchitectonics: analysis of structural inhomogeneities in nervous tissue using an image analyser. J Microsc 157:367–381

    Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005a) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005b) Is prefrontal white matter enlargement a human evolutionary specialization? Reply Nat Neurosci 8:538

    Google Scholar 

  • Schüz A, Braitenberg V (2002) The human cortical white matter: quantitative aspects of cortico-cortical connectivity. In: Schüz A, Miller R (eds) Cortical areas: unity and diversity. Taylor and Francis, London, pp 377–386

    Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 106:129–155

    Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241

    Google Scholar 

  • Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317–332

    Google Scholar 

  • Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and apes share a large frontal cortex. Nat Neurosci 5:272–276

    Google Scholar 

  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485–1497

    Google Scholar 

  • Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009) Neocortical neuron types in xenarthra and afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213:301–328

    Google Scholar 

  • Sherwood CC, Smaers JB (2013) What’s the fuss over human frontal lobe evolution? Trends Cogn Sci (in press)

    Google Scholar 

  • Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004) Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131:5639–5647

    Google Scholar 

  • Shultz S, Dunbar R (2010) Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc Natl Acad Sci USA 107:21582–21586

    Google Scholar 

  • Smaers JB, Schleicher A, Zilles K, Vinicius L (2010) Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS ONE 5:e9123

    Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B Biol Sci 280:20130269

    Google Scholar 

  • Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011) Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77:67–78

    Google Scholar 

  • Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, Kelso J, Nickel B, Dannemann M, et al (2009) Transcriptional neoteny in the human brain. Proc Natl Acad Sci 106:5743–5748

    Google Scholar 

  • Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, Jiang X, Zhang X, Xu G et al (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9:e1001214

    Google Scholar 

  • Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR et al (2012) Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 520:2917–2929

    Google Scholar 

  • Stimpson CD, Tetreault NA, Allman JM, Jacobs B, Butti C, Hof PR, Sherwood CC (2010) Biochemical specificity of von economo neurons in hominoids. Am J Hum Biol 23:22–28

    Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Google Scholar 

  • Wree A, Schleicher A, Zilles K (1982) Estimation of volume fractions in nervous tissue with an image analyzer. J Neurosci Methods 6:29–43

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic Press, New York

    Google Scholar 

  • Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV (2012) Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 91:455–465

    Google Scholar 

  • Zhang D, Guo L, Zhu D, Li K, Li L, Chen H, Zhao Q, Hu X, Liu T (2012) Diffusion tensor imaging reveals evolution of primate brain architectures. Brain Struct Funct Early view

    Google Scholar 

  • Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA 97:5621–5626

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chet C. Sherwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reyes, L.D., Sherwood, C.C. (2015). Neuroscience and Human Brain Evolution. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics