Skip to main content

Introduction: Paleoneurology, Resurgent!

  • Chapter
  • First Online:
Human Paleoneurology

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 3))

  • 1403 Accesses

Abstract

Much has happened in the study of paleoneurology since the turn of the 20th Century involving increasing sophistication of digital methods which permit a variety of statistical and imaging techniques that are replacing the older methods of studying endocasts, which have relied upon plaster/latex rubber copies of fossil materials and mostly qualitative statements regarding morphology and those correlations with structural and functional studies from neuroanatomy. Today, non-invasive imaging techniques allow for immediate study of b both qualitative and multivariate quantitative approaches to both fossil specimens and modern human endocranial variation. Nevertheless, a critical examination of several recent paleoneurological papers suggest that too little familiarity with actual neuroanatomy and reliance instead on digitized descriptions and statistical techniques is leading to hypotheses that fly in the face of actual neuroanatomical details. We need a much better understanding of modern human and ape neuroanatomical patterns as well as more fossil specimens, and in particular, better ethics of sharing digital information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariens-Kappers CU (1934) The fissuration on the frontal lobe of Sinanthropus pekinensis. Proc K Ned Akad Wet 36:802–812

    Google Scholar 

  • Allen JS et al (2006) Looking for the lunate sulcus: a magnetic resonance imaging study in modern humans. Anat Record Part A 288A:867–876

    Google Scholar 

  • Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Balzeau A, Gilltssen E (2010) Endocranial shape asymmetries in Pan paniscus, Pan troglodytes and Gorilla gorilla assessed via skull based landmark analysis. J Human Evol 59:54–69

    Article  Google Scholar 

  • Barton RA, Venditti C (2013) Human frontal lobes are not relatively large. Proc Natl Acad Sci USA 110:9001–9006

    Article  Google Scholar 

  • Bienvenu T et al (2013) The endocast of Sahelanthropus tchadensis, the earliest known hominid. Am J Phys Anthropol S56:80–81

    Google Scholar 

  • Black D (1932) The brain cast of Sinanthropus, a review. J Comp Neurol 56:361–366

    Google Scholar 

  • von Bonin G (1948) The frontal lobe of primates: cytoarchitectural studies. Res Publ Assoc Res Nerv Ment Dis 27 (1):67–83

    Google Scholar 

  • Bruner E et al (2014) Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8:19

    Article  Google Scholar 

  • Carlson KJ et al (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1406

    Article  Google Scholar 

  • Connolly CJ (1950) The external morphology of the primate brain. CC Thomas, Springfield

    Google Scholar 

  • Clark WE et al (1936) The endocranial cast of the chimpanzee. J Roy Anthropol Inst Grt Brit Ireland 66:249

    Article  Google Scholar 

  • Edinger T (1949) Paleoneurology versus comparative brain anatomy. Brain endocasts: the paleoneurological evidence. Wiley-Liss, New York, pp 273–282

    Google Scholar 

  • Falk D (1985) Apples, oranges and the lunate sulcus. Am J Phys Anthropol 67:313–315

    Google Scholar 

  • Falk D et al (2000) Early hominid brain evolution: a new look at old endocasts. J Hum Evol 38:695–717

    Article  Google Scholar 

  • Falk D (2009) New information about Albert Einstein’s brain. Front Evol Neurosci 1:3

    Article  Google Scholar 

  • Falk D et al (2009) LB1’s virtual endocast, microcephaly, and hominin brain evolution. J Hum Evol 57:597–607

    Google Scholar 

  • Falk D, Clarke R (2007) Brief communication: new reconstruction of the Taung endocast. Am J Phys Anthrop 134:529–534

    Google Scholar 

  • Falk D, Clarke R (2012a) Letter to the editor: response to Holloway and Broadfield’s critique of our reconstruction of the Taung virtual endocast. Am J Phys Anthropo 148:483–485

    Google Scholar 

  • Falk D, Clarke R (2012b) Letter to the editor: reply to Holloway and Broadfield’s letter to the editor regarding the Taung endocast. Am J Phys Anthrop 149:327–328

    Google Scholar 

  • Falk D et al (2013) The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain 136:1304–1327

    Article  Google Scholar 

  • Falk D et al (2012) Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. PNAS 1119752109

    Google Scholar 

  • Grimaud-Herve D (1997) L’evolution de L’enchephale Chez Homo Erectus et Homo Sapiens. CNRS Editions, Paris

    Google Scholar 

  • Hirschler P (1942) Anthropoid and human endocranial casts. Noord-Hollandsche Witgevers Maatschappen, Amsterdam

    Google Scholar 

  • Holloway RL (1964) Some aspects of quantitative relations in the primate Brain. PhD Dissertation, University of California, Berkeley

    Google Scholar 

  • Holloway RL (1984) The Taung endocast and the lunate sulcus: a rejection of its anterior placement. Am J Phys Anthropol 64:285–287

    Article  Google Scholar 

  • Holloway RL (1985) The past, present, and future significance of the lunate sulcus. In: Tobias PV (ed) Hominid evolution: past, present, and future. A. R. Liss Inc., New York, pp 47–62

    Google Scholar 

  • Holloway RL (1996) Evolution of the human brain. Chapter 4. In Lock A, Peters C (eds) Handbook of human symbolic evolution. Oxford University Press, New York, pp 74-116

    Google Scholar 

  • Holloway RL (2008) The human brain evolving: a personal retrospective. Ann Rev Anthropol 37:1–19

    Article  Google Scholar 

  • Holloway RL et al (2013a) Metopism and early brain evolution. Am J Phys Anthropol S56:150–151

    Google Scholar 

  • Holloway RL, Broadfield DC, Carlson K (2013b) Metopism and early human brain evolution. Am J Phys Anthropol 150(S56):150–151

    Google Scholar 

  • Holloway RL, Schoenemann PT (2014) The occipital lobes of Neandertal brans, orbit size, and cognition: what is the evidence for Neandertal cognitive inferiority? Am. J. Phys. Anthrop. S58:143–144

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record: vol. 3: brain endocasts: the paleoneurological evidence. Schwartz JH, Tattersall I (eds) Wiley-Liss, New York

    Google Scholar 

  • Holloway RL, Broadfield DC (2011) Technical note: the midline and endocranial volume of the Taung endocast. Am J Phys Anthropol 146:319–322

    Article  Google Scholar 

  • Holloway RL, Broadfield DC (2012a) Letter to the editor: response to Falk and Clarke regarding Taung midline. Am J Phys Anthropol 143:326

    Article  Google Scholar 

  • Holloway RL, Broadfield DC (2012b) Letter to the editor: reply to Falk and Clarke on Taung Virtual endocast midline and volume. Am J Phys Anthropol 149:326

    Article  Google Scholar 

  • Holloway RL (1970) Australopithecine endocast (Taung specimen, 1924): a new volume determination. Science 168:966–968

    Article  Google Scholar 

  • Holloway RL (1997) Neuroanatomy, comparative. In Spencer F (ed) History of physical anthropology: an encyclopedia, vol 2 (M–Z). Garland Publishing, Inc., New York, pp 732–743

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2001) Revisiting australopithecine visual striate cortex: newer data from chimpanzee and human brains suggest it could have been reduced during australopithecine times. In: Falk D, Gibbon KR (eds) Evolutionary anatomy of the primate cerebral cortex. (A Festschrift for Dr. Harry Jerison.) Cambridge University Press, Cambridge, pp 177–186

    Google Scholar 

  • Holloway RL, Broadfield DC, Yuan MS (2003) Morphology and histology of chimpanzee primary visual striate cortex indicate that brain reorganization predated brain expansion in early hominid evolution. Anat Rec 273A:594–602

    Article  Google Scholar 

  • Holloway RL (2009) Brain fossils: endocasts. In: Squire LR (ed) Encyclopedia of neuroscience, vol 2. Academic Press, Oxford, pp 253–261

    Google Scholar 

  • Holloway RL (2012) The issue of brain reorganization in Australopithecus and early hominids: Dart had it right. Chapter 9. In: Reynolds SC, Gallagher A (eds) African genesis: perspectives on hominin evolution. Cambridge University Press, Cambridge, pp 163–180

    Google Scholar 

  • Holloway RL, Schoenemann T, Monge J (2010) The hobbit brain: some doubts about its “derived features”. Am J Phys Anthropol 141(S50):130

    Google Scholar 

  • Keith A (1931) New discoveries relating to the antiquity of man. Williams and Norgate Ltd, London

    Google Scholar 

  • Klekamp G et al (1994) Morphomrtric study on the postnatal growth of the visual cortex of Australian aborigines and Caucasians. Jurnal fur Hirnforschung 35(4):541–548

    Google Scholar 

  • Kubo D, Kono RT, Kaifu Y (2013) Brain size of Homo floresiensis and its evolutionary implications. Proc Royal Soc B 280:20130338

    Article  Google Scholar 

  • Neubauer S et al (2012) Endocranial volume of Australopithecus africanus: new CT-based estimates and the effects of missing data and small sample size. J Hum Evol 62:498–510

    Article  Google Scholar 

  • Pearce E, Stringer C, Dunbar R (2013) New insights into differences in brain organization between neanderthals and anatomically modern humans. Proc R Soc B 280:1758

    Article  Google Scholar 

  • Radinsky L (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–505

    Article  Google Scholar 

  • Shellshear JL, Smith GE (1934) A comparative study of the endocranial cast of Sinanthropus. Philos Trans R Soc Lond B 223:469–487

    Article  Google Scholar 

  • Smith GE (1926) Casts obtained from the brain cases of fossil man. Nat Hist 26:294–299

    Google Scholar 

  • Symington J (1916) Endocranial casts and brain form: a criticism of some recentspeculations. J Anat Physiol 11:111–130

    Google Scholar 

  • Weber GW et al (2012) Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation. In: Reynolds SC, Gallagher A (eds) African genesis: perspectives on hominin evolution. The Guilford Press, Cambridge: New York, pp 298–316

    Chapter  Google Scholar 

  • Weidenreich F (1936) Observations on the form and proportions of the endeocranial casts of Sinanthropus pekinensis, other hominids, and the great apes. Paleontogica Sinica (B) VII:1–50

    Google Scholar 

  • Weidenreich F (1943) The skull of Sinanthropus pekinensis: a comparative study on a primitive hominid skull. Paleontol Sin New Ser 10:108–113

    Google Scholar 

  • Weidenreich F (1941) The brain and its role in the phylogenetic transformation of the human skull. Trans Am Philos Soc 31:321–442

    Article  Google Scholar 

  • Wu XJ, Schepartz L, Falk D, Liu W (2006) Endocast of Hexian Homo erectus from south China. Am J Phys Anthropol 130:445–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Holloway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holloway, R. (2015). Introduction: Paleoneurology, Resurgent!. In: Bruner, E. (eds) Human Paleoneurology. Springer Series in Bio-/Neuroinformatics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-08500-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08500-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08499-2

  • Online ISBN: 978-3-319-08500-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics