Skip to main content

Trace Complexity of Chaotic Reversible Cellular Automata

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8507))

Abstract

Delvenne, Kůrka and Blondel have defined new notions of computational complexity for arbitrary symbolic systems, and shown examples of effective systems that are computationally universal in this sense. The notion is defined in terms of the trace function of the system, and aims to capture its dynamics. We present a Devaney-chaotic reversible cellular automaton that is universal in their sense, answering a question that they explicitly left open. We also discuss some implications and limitations of the construction.

Research supported by the Academy of Finland Grant 131558.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17, 525–532 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyle, M.: Some sofic shifts cannot commute with nonwandering shifts of finite type. Illinois J. Math. 48(4), 1267–1277 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Delvenne, J.-C., Kůrka, P., Blondel, V.: Decidability and universality in symbolic dynamical systems. Fund. Inform. 74(4), 463–490 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Delvenne, J.-C., Kůrka, P., Blondel, V.D.: Computational universality in symbolic dynamical systems. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 104–115. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program, Redwood City (1989)

    MATH  Google Scholar 

  8. Durand, B., Róka, Z.: The game of life: universality revisited. In: Cellular automata (Saissac 1996). Math. Appl., vol. 460, pp. 51–74. Kluwer Acad. Publ., Dordrecht (1999)

    Chapter  Google Scholar 

  9. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci. 174(1-2), 203–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lukkarila, V.: Sensitivity and topological mixing are undecidable for reversible one-dimensional cellular automata. Technical Report 927, TUCS (2009)

    Google Scholar 

  11. Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. The Transactions of The IEICE E72-E(6), 758–762 (1989)

    Google Scholar 

  12. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible turing machine. The Transactions of the IEICE E72, 223–228 (1989)

    Google Scholar 

  13. Nasu, M.: Textile systems for endomorphisms and automorphisms of the shift. Mem. Amer. Math. Soc. 114(546), viii+215 (1995)

    Google Scholar 

  14. Nasu, M.: Textile systems and one-sided resolving automorphisms and endomorphisms of the shift. Ergodic Theory and Dynamical Systems 28, 167–209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sacks, G.E.: Higher recursion theory. Perspectives in mathematical logic. Springer (1990)

    Google Scholar 

  16. Smith III, A.R.: Simple computation-universal cellular spaces. J. Assoc. Comput. Mach. 18, 339–353 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  17. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

    Google Scholar 

  18. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10(1-2), 1–35 (1983); Cellular automata (Los Alamos, N.M., 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kari, J., Salo, V., Törmä, I. (2014). Trace Complexity of Chaotic Reversible Cellular Automata. In: Yamashita, S., Minato, Si. (eds) Reversible Computation. RC 2014. Lecture Notes in Computer Science, vol 8507. Springer, Cham. https://doi.org/10.1007/978-3-319-08494-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08494-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08493-0

  • Online ISBN: 978-3-319-08494-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics