Skip to main content

Stochastic Ion Channels

  • Chapter
  • First Online:
Stochastic Processes in Cell Biology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 41))

  • 4727 Accesses

Abstract

Ion channels are pore-forming membrane proteins that gate the flow of ions across the cell membrane and the membrane of various intracellular organelles [261, 322]. More than 300 different types of ion channels have been identified across different cell types, which are primarily classified by the nature of their gating and the species of ions passing through the open gates. For example, the opening and closing of voltage-gated ion channels depends on the voltage gradient across the plasma membrane, while ligand-gated ion channels are open or closed by the binding of ligands to the channel. Both types are particularly prominent components of the nervous system, where voltage-gated ion channels underlie the generation of action potentials and ligand-gated (neurotransmitter activated) ion channels mediate conduction across synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baras, F., Mansour, M., Malek, M., Pearson, J.E.: Microscopic simulation of chemical bistability in homogeneous systems. J. Chem. Phys. 105, 8257–8261 (1996)

    Article  Google Scholar 

  2. Bressloff, P.C.: Waves in Neural Media: From Single Neurons to Neural Fields. Springer, New York (2014)

    Book  Google Scholar 

  3. Bressloff, P.C., Earnshaw, B.A.: A dynamical corral model of protein trafficking in spines. Biophys. J. 96, 1786–1802 (2009)

    Article  Google Scholar 

  4. Bressloff, P.C., Newby, J.M.: Stochastic hybrid model of spontaneous dendritic NMDA spikes. Phys. Biol. 11, 016006 (2014)

    Article  Google Scholar 

  5. Brown, F.L.H., Leitner, D.M., McCammon, J.A., Wilson, K.R.: Lateral diffusion of membrane proteins in the presence of static and dynamics corrals: suggestions for appropriate variables. Biophys. J. 78, 2257–2269 (2000)

    Article  Google Scholar 

  6. Buckwar, E., Riedler, M.G.: An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63, 1051–1093 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, H., Lederer, W.J.: Calcium sparks. Physiol. Rev. 88, 1491–1545 (2008)

    Article  Google Scholar 

  8. Cheng, H., Lederer, M.R., Lederer, W.J., Cannell, M.B.: Calcium sparks and waves in cardiac myocytes. Am. J. Physiol. 270, C148–C159 (1996)

    Google Scholar 

  9. Chow, C.C., White, J.A.: Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 3013–3021 (1996)

    Article  Google Scholar 

  10. Dykman, M.I., Mori, E., Ross, J., Hunt, P.M.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. A 100, 5735–5750 (1994)

    Article  Google Scholar 

  11. Elgart, V., Kamenev, A.: Rare event statistics in reaction–diffusion systems. Phys. Rev. E 70, 041106 (2004)

    Article  MathSciNet  Google Scholar 

  12. Ermentrout, G.B., Terman, D.: Mathematical Foundations of Neuroscience. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Escudero, C., Kamanev, A.: Switching rates of multistep reactions. Phys. Rev. E 79, 041149 (2009)

    Article  Google Scholar 

  14. Falcke, M.: On the role of stochastic channel behavior in intracellular Ca2+ dynamics. Biophys. J. 84, 42–56 (2003)

    Article  Google Scholar 

  15. Falcke, M.: Reading the patterns in living cells: the physics of Ca2+ signaling. Adv. Phys. 53, 255–440 (2004)

    Article  Google Scholar 

  16. Falcke, M., Tsimiring, L., Levine, H.: Stochastic spreading of intracellular Ca2+ release. Phys. Rev. E 62, 2636–2643 (2000)

    Article  Google Scholar 

  17. Fox, R.F., Lu, Y.N.: Emergent collective behavior in large numbers of globally coupled independent stochastic ion channels. Phys. Rev. E 49, 3421–3431 (1994)

    Article  Google Scholar 

  18. Gardiner, C.W.: Handbook of Stochastic Methods, 4th edn. Springer, Berlin (2009)

    Google Scholar 

  19. Goldwyn, J.H., Shea-Brown, E.: The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Comput. Biol. 7, e1002247 (2011)

    Article  MathSciNet  Google Scholar 

  20. Groff, J.R., DeRemigio, H., Smith, G.D.: Markov chain models of ion channels and calcium release sites, chap. 2. In: Stochastic Methods in Neuroscience, pp. 29–64. Oxford University Press, Oxford (2009)

    Google Scholar 

  21. Hanggi, P., Grabert, H., Talkner, P., Thomas, H.: Bistable systems: master equation versus Fokker–Planck modeling. Phys. Rev. A 29, 371–378 (1984)

    Article  MathSciNet  Google Scholar 

  22. Hanggi, P., Talkner, P., Borkovec, M.: Reaction rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  MathSciNet  Google Scholar 

  23. Hille, B.: Ionic Channels of Excitable Membranes, 3rd edn. Sinauer Associates, Massachusetts (2001)

    Google Scholar 

  24. Hinch, R.: A mathematical analysis of the generation and termination of calcium sparks. Biophys. J. 86, 1293–1307 (2004)

    Article  Google Scholar 

  25. Hinch, R., Chapman, S.J.: Exponentially slow transitions on a Markov chain: the frequency of calcium sparks. Eur. J. Appl. Math. 16, 427–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  27. Keener, J.P., Newby, J.M.: Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phy. Rev. E 84, 011918 (2011)

    Article  Google Scholar 

  28. Keener, J.P., Sneyd, J.: Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer, New York (2009)

    Google Scholar 

  29. Keizer, J., Smith, G.D.: Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys. Chem. 72, 87–100 (1998)

    Article  Google Scholar 

  30. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: An asymptotic theory of large deviations for Markov jump processes. SIAM J. Appl. Math. 46, 1006–1028 (1985)

    Article  MathSciNet  Google Scholar 

  31. Kubo, R.: Fluctuation, relaxation and resonance in magnetic systems. In: TerHaar, D. (ed.) Stochastic Theory of Line Shape. Oliver and Boyd, Edinburgh (1962)

    Google Scholar 

  32. Kurtz, T.G.: Limit theorems and diffusion approximations for density dependent Markov chains. Math. Prog. Stud. 5, 67–78 (1976)

    Article  MathSciNet  Google Scholar 

  33. Lechleiter, J., Girard, S., Peralta, E., Clapham, D.: Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123–126 (1991)

    Article  Google Scholar 

  34. Leitner, D.M., Brown, F.L.H., Wilson, K.R.: Regulation of protein mobility in cell membranes: a dynamic corral model. Biophys. J. 78, 125–135 (2000)

    Article  Google Scholar 

  35. Li, Y., Rinzel, J.: Equations for InsP3 receptor-mediated calcium oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994)

    Article  Google Scholar 

  36. Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ. Res. 74, 1097–1113 (1994)

    Google Scholar 

  37. Marban, E., Robinson, S.W., Wier, W.G.: Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 78, 1185–1192 (1986)

    Article  Google Scholar 

  38. Marzen, S., Garcia, H.G., Phililps, R.: Statistical mechanics of Monod-Wyman-Changeux (MWC) models. J. Mol. Biol. 425, 1433–1460 (2013)

    Article  Google Scholar 

  39. Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  Google Scholar 

  40. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. J. Biophys. 35, 193–213 (1981)

    Article  Google Scholar 

  41. Newby, J.M., Bressloff, P.C., Keeener, J.P.: The effect of potassium channels on spontaneous action potential initiation by stochastic ion channels. Phys. Rev. Lett. 111, 128101 (2013)

    Article  Google Scholar 

  42. Pakdaman, K., Thieullen, M., Wainrib, G.: Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. Appl. Probab. 42, 761–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Parker, I., Ivorra, I.: Localized all-or-none calcium liberation by inositol triphosphate. Science 250, 977–979 (1990)

    Article  Google Scholar 

  44. Parker, I., Yao, Y.: Regenerative release of calcium from functionally discrete subcellular stores by inositol triphosphate. Proc. Roy. Soc. Lond. B 246, 269–274 (1991)

    Article  Google Scholar 

  45. Phillips, R., Kondev, J., Theriot, J., Garcia, H.: Physical Biology of the Cell, 2nd edn. Garland Science, New York (2012)

    Google Scholar 

  46. Qian, H.: Cooperativity in cellular biochemical processes. Annu. Rev. Biophys. 41, 179–204 (2012)

    Article  Google Scholar 

  47. Reingruber, J., Holcman, D.: Narrow escape for a stochastically gated Brownian ligand. J. Phys. Condens. Matter 22, 065103 (2010)

    Article  Google Scholar 

  48. Rubin, J., Terman, D.: Geometric singular perturbation analysis of neuronal dynamics. In: Fiedler, B. (ed.) Handbook of Dynamical Systems: Towards Applications, vol. 2. Elsevier, Amsterdam (2002)

    Google Scholar 

  49. Salsa, S.: Partial Differential Equations in Action. Springer, New York (2009)

    Google Scholar 

  50. Sherman, A., Rinzel, R., Keizer, J.: Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys. J. 54, 411–425 (1988)

    Article  Google Scholar 

  51. Shuai, J.W., Jung, P.: Stochastic properties of Ca2+ release of Inositol 1,4,5-Triphosphate receptor clusters. Biophys. J. 83, 87–97 (2002)

    Article  Google Scholar 

  52. Smith, G.D.: Modeling the stochastic gating of ion channels, chap. 11. In: Fall, C., Marland, E.S., Wagner, J.M., Tyson, J.J. (eds.) Computational Cell Biology. Springer, New York (2002)

    Google Scholar 

  53. Swillens, S., Dupont, G., Combettes, L., Champeil, P.: From calcium blips to calcium puffs: theoretical analysis of the requirement for interchannel communication. Proc. Natl. Acad. Sci. (USA) 96, 13750–13755 (1999)

    Google Scholar 

  54. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)

    Google Scholar 

  55. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. Roy. Soc. Interface 6, 925–940 (2009)

    Article  Google Scholar 

  56. Wainrib, G., Thieullen, M., Pakdaman, K.: Reduction of stochastic conductance-based neuron models with time-scales separation. J. Comput. Neurosci. 32, 327–46 (2012)

    Article  MathSciNet  Google Scholar 

  57. Wang, S.Q., Song, L.S., Xu, L., Meissner, G., Lakatta, E.G., Rios, E., Stern, M.D., Cheng, H.: Thermodynamically irreversible gating of ryanodine receptors in situ revealed by stereotyped duration of release of Ca21 sparks. Biophys. J. 83, 242–251 (2002)

    Article  Google Scholar 

  58. White, J.A., Rubinstein, J.T., Kay, A.R.: Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000)

    Article  Google Scholar 

  59. Williams, G.S.B., Huertas, M.A., Sobie, E.A., Jafri, M.S., Smith, G.D.: A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes. Biophys. J. 92, 2311–2328 (2007)

    Article  Google Scholar 

  60. Williams, G.S.B., Huertas, M.A., Sobie, E.A., Jafri, M.S., Smith, G.D.: Moment closure for local control models of calcium-induced calcium release in cardiac myocytes. Biophys. J. 95, 1689–1703 (2008)

    Article  Google Scholar 

  61. Yao, Y., Choi, J., Parker, I.: Quantal puff of intracellular Ca2+ evoked by inositol triphosphate in Xenopus oocytes. J. Physiol. 482, 533–553 (1995)

    Google Scholar 

  62. Young, G.W.D., Keizer, J.: A single pool IP3-receptor model for agonist stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. (USA) 89, 9895–9899 (1992)

    Google Scholar 

  63. Zahradnikova, A., Zahradnik, I.: A minimal gating model for the cardiac Ca2+ release channel. Biophys. J. 71, 2996–3012 (1996)

    Article  Google Scholar 

  64. Zwanzig, R.: Rate processes with dynamical disorder. Acc. Chem. Res. 23, 148–152 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bressloff, P.C. (2014). Stochastic Ion Channels. In: Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-08488-6_3

Download citation

Publish with us

Policies and ethics