Skip to main content

The WKB Method, Path-Integrals, and Large Deviations

  • Chapter
  • First Online:
Stochastic Processes in Cell Biology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 41))

  • 4717 Accesses

Abstract

In Sects. 3.4 and 3.5 we highlighted a limitation of the diffusion approximation of jump Markov processes for large system size N, namely, that it can lead to exponentially large errors in solutions to FPT problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Perron–Frobenius theorem asserts that a real square matrix with positive entries has a unique largest real eigenvalue (the Perron eigenvalue) and that the corresponding eigenvector has strictly positive components. The theorem can also be extended to matrices with non-negative entries, provided that the matrix is irreducible. However, there can now be complex eigenvalues with the same absolute value as the Perron eigenvalue. In the case of a transition matrix, the Perron eigenvalue is zero. Strictly speaking, the Perron–Frobenius theorem applies to finite-dimensional matrices, so we will assume that it still holds in cases where the number of discrete states is infinite.

  2. 2.

    Technically speaking, one first has to normal-order the operator \(\mathcal{H}\) by moving all operators A to the right of all operators A using repeated application of the commutation rule. However, given the dependence of the transition rates on the system size N, this normal ordering introduces O(1∕N) corrections, which can be ignored to leading order.

References

  1. Bressloff, P.C.: Waves in Neural Media: From Single Neurons to Neural Fields. Springer, New York (2014)

    Book  Google Scholar 

  2. Bressloff, P.C., Newby, J.M.: Stochastic models of intracellular transport. Rev. Mod. Phys. 85, 135–196 (2013)

    Article  Google Scholar 

  3. Bressloff, P.C., Newby, J.M.: Path-integrals and large deviations in stochastic hybrid systems. Phys. Rev. E 89, 042701 (2014)

    Article  Google Scholar 

  4. Bressloff, P.C., Newby, J.M.: Stochastic hybrid model of spontaneous dendritic NMDA spikes. Phys. Biol. 11, 016006 (2014)

    Article  Google Scholar 

  5. Davis, M.H.A.: Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. Journal of the Royal Society, Series B (Methodological), 46, 353–388 (1984)

    MATH  Google Scholar 

  6. Doering, C.R., Sargsyan, K.V., Sander, L.M., Vanden-Eijnden, E.: Asymptotics of rare events in birth-death processes bypassing the exact solutions. J. Phys. Condens. Matter 19, 065145 (2007)

    Article  Google Scholar 

  7. Doi, M.: Second quantization representation for classical many-particle systems. J. Phys. A 9, 1465–1477 (1976)

    Article  Google Scholar 

  8. Doi, M.: Stochastic theory of diffusion controlled reactions. J. Phys. A 9, 1479–1495 (1976)

    Article  Google Scholar 

  9. Dykman, M.I., Mori, E., Ross, J., Hunt, P.M.: Large fluctuations and optimal paths in chemical kinetics. J. Chem. Phys. A 100, 5735–5750 (1994)

    Article  Google Scholar 

  10. Elgart, V., Kamenev, A.: Rare event statistics in reaction–diffusion systems. Phys. Rev. E 70, 041106 (2004)

    Article  MathSciNet  Google Scholar 

  11. Escudero, C., Kamanev, A.: Switching rates of multistep reactions. Phys. Rev. E 79, 041149 (2009)

    Article  Google Scholar 

  12. Faggionato, A., Gabrielli, D, Crivellari, M.: Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Processes and Related Fields. 16, 497–548 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Graham, R., Tel, T.: On the weak-noise limit of Fokker-Planck models. J. Stat. Phys. 35, 729 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graham, R., Tel, T.: Weak-noise limit of Fokker-Planck models and non-differentiable potentials for dissipative dynamical systems. Phys. Rev. 31, 1109 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hanggi, P., Grabert, H., Talkner, P., Thomas, H.: Bistable systems: master equation versus Fokker–Planck modeling. Phys. Rev. A 29, 371–378 (1984)

    Article  MathSciNet  Google Scholar 

  17. Hinch, R., Chapman, S.J.: Exponentially slow transitions on a Markov chain: the frequency of calcium sparks. Eur. J. Appl. Math. 16, 427–446 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jose, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  19. Keener, J.P., Newby, J.M.: Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Phy. Rev. E 84, 011918 (2011)

    Article  Google Scholar 

  20. Kifer, Y.: Large deviations and adiabatic transitions for dynamical systems and Markov processes in fully coupled averaging. Memoirs of the AMS 201, issue 944 (2009)

    Google Scholar 

  21. Knessl, C., Matkowsky, B.J., Schuss, Z., Tier, C.: An asymptotic theory of large deviations for Markov jump processes. SIAM J. Appl. Math. 46, 1006–1028 (1985)

    Article  MathSciNet  Google Scholar 

  22. Maier, R.S., Stein, D.L.: Limiting exit location distribution in the stochastic exit problem. SIAM J. Appl. Math. 57, 752–790 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matkowsky, B.J., Schuss, Z.: The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33, 365–382 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naeh, T., Klosek, M.M., Matkowsky, B.J., Schuss, Z.: A direct approach to the exit problem. SIAM J. Appl. Math. 50, 595–627 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Newby, J.M.: Isolating intrinsic noise sources in a stochastic genetic switch. Phys. Biol. 9, 026002 (2012)

    Article  Google Scholar 

  26. Newby, J.M., Keener, J.P.: An asymptotic analysis of the spatially inhomogeneous velocity-jump process. SIAM Multiscale Model. Simul. 9, 735–765 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Newby, J.M., Bressloff, P.C., Keeener, J.P.: The effect of potassium channels on spontaneous action potential initiation by stochastic ion channels. Phys. Rev. Lett. 111, 128101 (2013)

    Article  Google Scholar 

  28. Peliti, L.: Path integral approach to birth-death processes on a lattice. J. Phys. 46, 1469–1483 (1985)

    Article  MathSciNet  Google Scholar 

  29. Sasai, M., Wolynes, P. G.: Stochastic gene expression as a many-body problem. Proc. Natl. Acad. Sci. 100, 2374–2379 (2003)

    Article  Google Scholar 

  30. Schuss, Z.: Theory and applications of stochastic processes: an analytical approach. In: Applied Mathematical Sciences, vol. 170. Springer, New York (2010)

    Google Scholar 

  31. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  MathSciNet  Google Scholar 

  32. Vellela, M., Qian, H.: Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited. J. Roy. Soc. Interface 6, 925–940 (2009)

    Article  Google Scholar 

  33. Walczak, A. M., Sasai, M., Wolynes, P. G.: Self-consistent proteomic field theory of stochastic gene switches. Biophys. J. 88, 828–850 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bressloff, P.C. (2014). The WKB Method, Path-Integrals, and Large Deviations. In: Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-08488-6_10

Download citation

Publish with us

Policies and ethics