Skip to main content

Introduction

  • Chapter
  • First Online:
Stochastic Processes in Cell Biology

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 41))

Abstract

One of the major challenges in modern biology is to understand how the molecular components of a living cell operate in a highly noisy environment. What are the specific sources of noise in a cell? How do cells attenuate the effects of noise in order to exhibit reliable behavior (robustness to noise)? In particular, how does a stochastic genotype result in a reliable phenotype through development? How does the noisy, crowded environment of a cell affect diffusive transport? How do molecular machines convert chemical energy to work? What are the physical limits of biochemical signaling, such as the sensitivity of biochemical sensors to environmental signals? Under what circumstances can a cell exploit noise to enhance its performance or the survival of its host organism? What is the role of self-organization in the formation and maintenance of subcellular structures such as the cytoskeleton? The goal of this book is to use the theory of stochastic processes and non-equilibrium systems to investigate these types of biological questions at the cellular level; analogous questions also hold at the multicellular level but are not addressed in this book since they would double its length! One can view the book either as an introduction to stochastic processes using cell biology as the motivating application or, conversely, as an introduction to mathematical cell biology with an emphasis on stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Walter, K.R.: Molecular Biology of the Cell, 5th edn. Garland, New York (2008)

    Google Scholar 

  2. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology, 2nd edn. Chapman and Hall/CRC, Boca Raton (2010)

    Google Scholar 

  3. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976)

    Article  Google Scholar 

  4. Bialek, W.: Biophysics. Princeton University Press, Princeton (2012)

    Google Scholar 

  5. Chandler, D.: Introduction to modern statistical mechanics. Oxford University Press, Oxford (1987)

    Google Scholar 

  6. Choquet, D., Triller, A.: The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev. Neurosci. 4, 251–265 (2003)

    Article  Google Scholar 

  7. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  8. Gardiner, C.W.: Handbook of Stochastic Methods, 4th edn. Springer, Berlin (2009)

    Google Scholar 

  9. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  10. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001)

    Google Scholar 

  11. Huber, F., Schnauss, J., Ronicke, S., Rauch, P., Muller, K., Futterer, C., Kas, J.E.: Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv. Phys. 62, 1–12 (2013)

    Article  Google Scholar 

  12. Jackson, M.B.: Molecular and Cellular Biophysics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Kaern, M., Elston, T.C., Blake, W.J., Collins, J.J.: Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005)

    Article  Google Scholar 

  14. Kardar, M.: Statistical Physics of Particles. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  15. Keener, J.P., Sneyd, J.: Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer, New York (2009)

    Google Scholar 

  16. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  17. Kusumi, A., Sako, Y., Yamamoto, M.: Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy): effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993)

    Article  Google Scholar 

  18. Lippincott-Schwartz, J., Phair, R.D.: Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu. Rev. Biophys. 39, 559–578 (2010)

    Article  Google Scholar 

  19. Lippincott-Schwartz, J., Roberts, T.H., Hirschberg, K.: Secretory protein trafficking abd organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000)

    Article  Google Scholar 

  20. Lyons, L.: Bayes and Frequentism: a particle physicist’s perspective. Contemp. Phys. 54, 1–16 (2013)

    Article  Google Scholar 

  21. Maheshri, N., O’Shea, E.K.: Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007)

    Article  Google Scholar 

  22. Misteli, T.: Self-organization in cell architecture. J. Cell Biol. 155, 181–186 (2001)

    Article  Google Scholar 

  23. Mitchison, T.J.: Self-organization of polymer-motor systems in the cytoskeleton. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 336, 99–106 (1992)

    Article  Google Scholar 

  24. Murray, J.D.: Mathematical Biology, vols. I and II, 3rd edn. Springer, Berlin (2008)

    Google Scholar 

  25. Nedelec, F., Surrey, T., Maggs, A.C., Leibler, S.: Self-organization of microtubules and motors. Nature 389, 305–308 (1997)

    Article  Google Scholar 

  26. Nicolis, G., Prigogine, I.: Self-organization in nonequilibrium systems, 512 pp. Wiley, New York (1977)

    Google Scholar 

  27. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, New York (1998)

    Book  Google Scholar 

  28. Paulsson, J.: Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005)

    Article  Google Scholar 

  29. Phillips, R., Kondev, J., Theriot, J., Garcia, H.: Physical Biology of the Cell, 2nd edn. Garland Science, New York (2012)

    Google Scholar 

  30. Raj, A., van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene expression and its consequences Cell 135, 216–226 (2008)

    Google Scholar 

  31. Reits, E.A., Neefjes, J.J.: From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001)

    Article  Google Scholar 

  32. Rook, M.S., Lu, M., Kosik, K.S.: CamKIIα 3’ untranslated regions-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000)

    Google Scholar 

  33. Sanchez, A., Choubey, S., Kondev, J.: Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013)

    Article  Google Scholar 

  34. Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)

    Article  Google Scholar 

  35. Schnapp, B.J., Gelles, J., Sheetz, M.P.: Nanometer-scale measurements using video light microscopy. Cell Motil. Cytoskeleton 10, 47–53 (1988)

    Article  Google Scholar 

  36. Schnitzer, M., Visscher, K., Block, S.: Force production by single kinesin motors. Nat. Cell Biol. 2, 718–723 (2000)

    Article  Google Scholar 

  37. Schuss, Z.: Theory and applications of stochastic processes: an analytical approach. In: Applied Mathematical Sciences, vol. 170. Springer, New York (2010)

    Google Scholar 

  38. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619 (2001)

    Article  Google Scholar 

  39. Triller, A., Choquet, D.: New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 (2008)

    Article  Google Scholar 

  40. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  41. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bressloff, P.C. (2014). Introduction. In: Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-08488-6_1

Download citation

Publish with us

Policies and ethics