Skip to main content

Intraoperative Microelectrode Recording

  • Chapter
  • First Online:
Deep Brain Stimulation for Neurological Disorders

Abstract

Deep brain stimulation (DBS) is widely used and is effective for treating involuntary movement disorders or intractable pain. DBS electrodes are typically implanted in deep brain structures such as the subthalamic nucleus and pallidum, which form part of the cortex–basal ganglia loop. These target structures are small and are surrounded by other vital neural structures. Therefore, the outcomes depend on whether the electrodes can be implanted accurately. Prior to surgery, patients are fitted with a stereotactic apparatus, and the target site is anatomically identified by imaging with the apparatus in place. Advances in planning software and other MRI guidance technologies now enable safer and more accurate surgery. Nevertheless, clear visualization of target sites on images remains difficult, and inaccuracies may result from imaging distortions due to the MRI magnetic field, errors caused by the stereotactic apparatus frame, other aspects of the system itself, and brain movement due to intraoperative cerebrospinal fluid leakage. Microelectrode recording (MER) of extracellular activity is used to identify and confirm targeted sites that are provisionally identified by imaging. The optimum sites for microelectrode placement are determined by intraoperative test stimulation to observe the stimulus-evoked effects. The objective of intraoperative MER for DBS is to use the characteristics and patterns of extracellular neural activity to identify the relative location of the target site (mapping). Here, we focus on MER during DBS surgery and intraoperative trial stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron MS, Wichmann T, Ma D et al (2002) Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:592–599

    CAS  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gao D et al (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203–214

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Boraud T, Bioulac B et al (1999) Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci 11:2167–2170

    Article  CAS  PubMed  Google Scholar 

  • Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732; discussion 722–732

    Article  PubMed  Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530–543

    CAS  PubMed  Google Scholar 

  • Holloway KL, Baron MS, Oberlander E et al (2008) Pallidal stimulation for Parkinson’s disease. In: Starr P, Barbaro NB, Larson PS (eds) Functional neurosurgery (Neurosurgical operative atlas), 2nd edn. Thieme Medical Publishers, New York, pp 188–194

    Google Scholar 

  • Hua SE, Lenz FA (2005) Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol 93:117–127

    Article  PubMed  Google Scholar 

  • Hutchison WD (2004) Electrophysiological findings in Gpe and Gpi. In: Israel Z, Burchiel K (eds) Microelectrode recording in movement disorder surgery. Thieme Medical Publishers, New York, pp 72–81

    Google Scholar 

  • Hutchison WD, Allan RJ, Opitz H et al (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:622–628

    Article  CAS  PubMed  Google Scholar 

  • Hutchison WD, Lang AE, Dostrovsky JO et al (2003) Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 53:480–488

    Article  PubMed  Google Scholar 

  • Jimenez F, Velasco F, Velasco M et al (2000) Subthalamic prelemniscal radiation stimulation for the treatment of Parkinson’s disease: electrophysiological characterization of the area. Arch Med Res 31:270–281

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Kano T, Kobayashi K et al (2005) Difference in surgical strategies between thalamotomy and thalamic deep brain stimulation for tremor control. J Neurol 252(Suppl 4):IV17–IV22

    PubMed  Google Scholar 

  • Kim JH, Ohara S, Lenz FA (2009) Mental arithmetic leads to multiple discrete changes from baseline in the firing patterns of human thalamic neurons. J Neurophysiol 101:2107–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi K, Winberry J, Liu CC et al (2009) A painful cutaneous laser stimulus evokes responses from single neurons in the human thalamic principal somatic sensory nucleus ventral caudal – Vc. J Neurophysiol 101:2210–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenz FA, Dostrovsky JO, Tasker RR et al (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    CAS  PubMed  Google Scholar 

  • Lenz FA, Kwan HC, Martin RL et al (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117(Pt 3):531–543

    Article  PubMed  Google Scholar 

  • Lenz FA, Suarez JI, Metman LV et al (1998) Pallidal activity during dystonia: somatosensory reorganisation and changes with severity. J Neurol Neurosurg Psychiatry 65:767–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merello M, Tenca E, Cerquetti D (2006) Neuronal activity of the zona incerta in Parkinson’s disease patients. Mov Disord 21:937–943

    Article  PubMed  Google Scholar 

  • Obuchi T, Katayama Y, Kobayashi K et al (2008) Direction and predictive factors for the shift of brain structure during deep brain stimulation electrode implantation for advanced Parkinson’s disease. Neuromodulation 11:302–310

    Article  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Rodriguez M, Guridi J et al (2001) The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790

    Article  CAS  PubMed  Google Scholar 

  • Sanghera MK, Grossman RG, Kalhorn CG et al (2003) Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery 52:1358–1370; discussion 1370–1373

    Article  PubMed  Google Scholar 

  • Sansur CA, Frysinger RC, Pouratian N et al (2007) Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 107:998–1003

    Article  PubMed  Google Scholar 

  • Schrock LE, Ostrem JL, Turner RS et al (2009) The subthalamic nucleus in primary dystonia: single-unit discharge characteristics. J Neurophysiol 102:3740–3752

    Article  PubMed Central  PubMed  Google Scholar 

  • Starr PA, Rau GM, Davis V et al (2005) Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol 93:3165–3176

    Article  PubMed  Google Scholar 

  • Steigerwald F, Hinz L, Pinsker MO et al (2005) Effect of propofol anesthesia on pallidal neuronal discharges in generalized dystonia. Neurosci Lett 386:156–159

    Article  CAS  PubMed  Google Scholar 

  • Steigerwald F, Potter M, Herzog J et al (2008) Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. J Neurophysiol 100:2515–2524

    Article  CAS  PubMed  Google Scholar 

  • Terao T, Takahashi H, Yokochi F et al (2003) Hemorrhagic complication of stereotactic surgery in patients with movement disorders. J Neurosurg 98:1241–1246

    Article  PubMed  Google Scholar 

  • Vitek JL, Zhang J, Evatt M et al (1998) GPi pallidotomy for dystonia: clinical outcome and neuronal activity. Adv Neurol 78:211–219

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutaka Kobayashi MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kobayashi, K., Katayama, Y. (2015). Intraoperative Microelectrode Recording. In: Itakura, T. (eds) Deep Brain Stimulation for Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-08476-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08476-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08475-6

  • Online ISBN: 978-3-319-08476-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics