Skip to main content

Application of Surface Active Monomers and Polymers Containing Links of Surface Active Monomers

  • Chapter
  • First Online:
Surface Active Monomers

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 564 Accesses

Summary

The last chapter focuses on the application of polymers resulted by copolymerization of surfmers with other monomers. However, the main accent was made on utilization of corresponding polymers in various fields of biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nickels JD, Schmidt CE (2013) Surface modification of the conductive polymer, polypyroole, via affinity peptide. J Biomed Mater Res A 101:1464–1471

    Article  Google Scholar 

  2. Lee J et al (2013) Caveolae-mediated endocytosis of conjugated polymer nanoparticles. Macromol Biosci 13:913–920

    Article  Google Scholar 

  3. Patil SD, Rhodes DG, Burgess DJ (2004) Anionic liposomal delivery system for DNA transfection. AAPS J 6:13–22

    Article  Google Scholar 

  4. Luo D, Salzman WM (2003) Synthetic dna delivery systems. Kluwer Academic, New York

    Google Scholar 

  5. Liu D, Chia EF, Tian H (2003) Chemical methods of DNA delivery: an overview. Methods Mol Biol 245:3–23

    Google Scholar 

  6. Brown MD, Schatzlein AG, Uchegbu IF (2001) Gene delivery with synthetic (non-viral) carriers. Int J Pharm 229:1–21

    Article  Google Scholar 

  7. Mänisto M (2007) Polymeric carriers in non-viral gene delivery. Dissertation, University of Kuopio

    Google Scholar 

  8. Zhang X et al (2006) Physicochemical properties of low molecular weight alkylated chitosans: a new class of potential nonviral vectors for gene delivery. Colloids Surf B Biointerfaces 51:140–148

    Article  Google Scholar 

  9. Zaichenko A et al (2008) Development of novel linear, block and branched oligoelectrolytes and functionally targeting nanoparticles. Pure Appl Chem 80:2309–2326

    Article  Google Scholar 

  10. Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 8:823–832

    Article  Google Scholar 

  11. Florence AT, Bailie AJ (1989) Non-ionic surfactant vesicles: alternatives to liposomes in drug delivery. In: Prescot LF, Nimmo WS (eds) Novel drug delivery and its therapeutic applications. Wiley, Chichester

    Google Scholar 

  12. Florence AT et al (1990) Non-ionic surfactant vesicles as carriers of doxorubicin. In: Gregoriadis G (ed) Targeting of drugs. Plenum, New York

    Google Scholar 

  13. Chandraprakash KS et al (1993) Effect of niosome encapsulation of methotrexate, macrophage activation, and tissue distribution of methotrexate and tumor size. Drug Deliv 1:333–337

    Article  Google Scholar 

  14. Kandasamy R, Vientramuthu S (2010) Formulation and optimization of zidovudine niosomes. AAPS Pharm Sci Tech 11:1119–1127

    Article  Google Scholar 

  15. Weihong L, Lai YC (2009) Novel polymerizable surface active monomers with both fluorine-containing groups and hydrophilic groups. US Patent 8071704 B2, 9 Apr 2009

    Google Scholar 

  16. Choi SW (2013) Bis(vinylcyclopropane) and bis(methacrylate) monomers with cholesteryl group for dental composites. e-Polymers 5:820–831

    Google Scholar 

  17. Wang S et al (2010) Surface modification of polymers via surface active and reactive end groups. US patent WO2010057080 A1, 10 March 2010

    Google Scholar 

  18. Scholz C, Kressler J (2013) In tailored polymer architectures for pharmaceutical and biomedical applications. ACS Symposium Series, Washington DC

    Book  Google Scholar 

  19. Rosenbauer EM, Landfester K, Musyanovych A (2009) Surface active monomer as a stabilizer for polyurea nanocapsules synthesized via interfacial polyaddition in inverse miniemulsion. Langmuir 25:12084–12091

    Article  Google Scholar 

  20. Kameya M, Yoshida T (1989) Water soluble monomers. Kobunshi Kako 38:398–409

    Google Scholar 

  21. Kohut AM (2006) Sintez i vlastuvosti poverhnevo-aktuvnuh monomeriv i peroxydiv (Synthesis and properties of surface active monomers and peroxides). Dissertation, Lviv Polytechnic National University

    Google Scholar 

  22. Banat IM (1995) Biosurfactants production and use in microbial enhanced oil recovery and pollution remediation: A review. Bioresour Technol 51:1–12

    Article  Google Scholar 

  23. Banat IM et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  Google Scholar 

  24. Fracchia L et al (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potential. In: Ghista DN (ed) Biomedical Science, Engineering and Technology, Chapter 14

    Google Scholar 

  25. Charreyere MT et al (1999) Surface functionalization of polystyrene nanoparticles with liposaccharide monomers: preparation, characterization and application. J Bioact Compatible Polym 14:64–90

    Google Scholar 

  26. Venz S, Dickens B (1993) Modified surface active polymers for adhesive bonding of dentin. J Dent Res 72:582

    Article  Google Scholar 

  27. Bowen RL (2009) Synthesis of polymerizable cyclodextrin derivatives for use in adhesion-promoting monomer formulations. J Res Natl Ins Stand Technol 114:1–9

    Article  Google Scholar 

  28. Youling Y et al (2003) Grafting sulfobetaine monomer onto silicone surface to improve haemocompatibility. Polym Int 53:121–126

    Google Scholar 

  29. Isquitz AJ, Walters PA (1972) Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl Microbiol 24:859–863

    Google Scholar 

  30. Ravikumar T et al (2006) Surface active antifungal polyquarternary amine. Biomacromolecules 7:2762–2769

    Article  Google Scholar 

  31. Murata H et al (2007) Permanent, non-leaching, antibacterial surfaces – 2: How high density cationic surfaces kill bacterial cells. Biomaterials 28:4870–4879

    Article  Google Scholar 

  32. Palermo EF et al (2011) Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J Phys Chem B 115:366–375

    Article  Google Scholar 

  33. Schwartz VB (2011) Design of nanoparticles systems with antimicrobial properties. Dissertation, Johannes Gutenberg-Universität Mainz

    Google Scholar 

  34. Caillier at al (2009) Synthesis and antimicrobial properties of polymerizable quaternary ammoniums. Eur j Med Chem 44:3201–3208

    Article  Google Scholar 

  35. Park JW, Kim H, Han M (2010) Polymeric self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces. Chem Soc Rev 39:2935–2947

    Article  Google Scholar 

  36. Ward SR et al (2012) Self-assembling monomers and oligomers as surface-modifying endgroups of polymers. US patent 20120095166, 19 Apr 2012

    Google Scholar 

  37. Nilson K et al (2007) Addition of thiol containing ligands to surface active Michael acceptor. Macromolecules 40:901–908

    Article  Google Scholar 

  38. Trivedi B (1982) Maleic anhydride. Culberston, New York

    Book  Google Scholar 

  39. Lee CJ et al (1980) A method for preparing β-hCG COOH peptide-carrier conjugates of predictable composition. Mol Immunol 17:749–756

    Article  Google Scholar 

  40. Scott MH, Convertine AJ, Danielle S (2009) End-functionalizated polymers and junction-functionalizated diblock copolymers VIA RAFT chain extension with maleimdo monomers. Bioconjugate Chem 20:1122–1128

    Article  Google Scholar 

  41. Accardo A et al (2011) Naposomes: a new class of peptide-derivatized, target-selective multimodal nanoparticles

    Google Scholar 

  42. Ishihara K et al (2004) A water soluble phospholipid polymer as a new biocompatible synthetic DNA carrier. Bull Chem Soc Jpn 77:2283–2288

    Article  Google Scholar 

  43. Palmer RR et al (2004) Biologica evaluation and drug delivery application of cationically modified phospholipid polymers. Biomaterials 19:4785–4796

    Article  Google Scholar 

  44. Ishihara K et al (2006) Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer 47:1390

    Article  Google Scholar 

  45. Ishihara K et al (2006) UCST-type cononosolvency behavior of poly (2-methacryloxyethyl phosphorylcholine) in the mixture of water and ethanol. Polym J 40:479–483

    Google Scholar 

  46. Santos S et al (2013) Amphiphilic molecules in drug delivery systems. In: Coelho J (ed) Drug delivery systems: advanced technologies potentially applicable in personalised treatment

    Google Scholar 

  47. Qui Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  Google Scholar 

  48. Roy S et al (2009) Polymers in mucoadhesive drug delivery systems: A brief note. Des Monomers Polym 12:483–495

    Article  Google Scholar 

  49. Lugo MT, Peppas NA (1999) Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules 32:6646–6651

    Article  Google Scholar 

  50. Varshosaz J, Falamarzian M (2001) Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes. Eur J Pharm Biopharm 51:235–240

    Article  Google Scholar 

  51. Satish CS, Satish KP, Shivakumar HG (2006) Hydrogels as controlled drug delivery systems: synthesis, crosslinking, water and drug transport mechanism. Indian J Pharm Sci 68:133–140

    Article  Google Scholar 

  52. Shivakumar HG, Satish CS (2004) Recent developments in self-regulated insulin delivery. Indian J Pharm Sci 66:137–141

    Google Scholar 

  53. Ogawa M et al (2012) Poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces articular cartilage regeneration in vivo: Comparison of the induction ability between single- and double-network gels. J Biomed Mat Res Part A 100A:2244–2251

    Google Scholar 

  54. Ottenbrite RM (2010) Biomedical applications of hydrogels handbook. Springer, New York

    Book  Google Scholar 

  55. Wang Y et al (2013) Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly(AA-co-AMPS) superabsorbent hydrogel. Turk J Chem 37:149–159

    Google Scholar 

  56. Bao Y, Ma JZ, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/ montmorillonite superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  Google Scholar 

  57. Wang XL et al (2007) Novel polymerizable surfactants with pH-sensitive amphiphilicity and cell membrane disruption for efficient siRNA delivery. Bioconjug Chem 18:2169–2177

    Article  Google Scholar 

  58. Brey NR, Liang L (1999) Novel polymerizable fatty acids, phospholipids and polymerized liposomes made therefrom. US patent WO 1999033940 A1, 8 July 1999

    Google Scholar 

  59. Nogueira DR et al (2011) The role of the concentrations in the membrane-disruptive properties of pH-sensitive lysine based surfactants. Acta Biomater 7:2846–2856

    Article  Google Scholar 

  60. Wang XL et al (2008) A multifunctional and reversible polymerizable carrier for efficient siRNA delivery. Biomaterials 29:15–22

    Article  Google Scholar 

  61. Huang X et al (2006) Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol Rapid Commun 27:2101–2106

    Article  Google Scholar 

  62. Garay-Jimenez JC et al (2009) Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticles emulsions prepared with conventional and polymerizable surfactants. Nanomed: Nanotechnol, Biol Med 5:443–451

    Article  Google Scholar 

  63. Accardo A et al (2011) Naposomes : a new class of peptide-derivatized, poly(butyl acrylate-styrene) nanoparticles target-selective multimodal nanoparticles for imaging therapeutic applications. Ther Delivery 2:235–257

    Article  Google Scholar 

  64. Liebher RB et al (2012) Maleimide activation of photon upconverting nanoparticles for bioconjugation. Nanotechnology 23, doi: 10.1088/0957-4484/23/48/485103

  65. Amici J et al (2011) Poly(ethylene glycol)-coated magnetite nanoparticles: preparation and characterization. Macromol Chem Phys 212:6. doi:10.1002/macp.201000707

    Article  Google Scholar 

  66. Amici J et al (2012) Polymer grafting onto magnetite nanoparticles by “click” reaction. J Mater Sci, Springer 47:8. doi:10.1007/s10853-011-5814-z

    Google Scholar 

  67. Amici J et al (2011) Photochemical synthesis of gold- polyethylenglycol core-shell nanoparticles. Eur Polym J 47:6. doi:10.1016/j.europolymj.2011.03.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Borzenkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Borzenkov, M., Hevus, O. (2014). Application of Surface Active Monomers and Polymers Containing Links of Surface Active Monomers. In: Surface Active Monomers. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08446-6_4

Download citation

Publish with us

Policies and ethics