Skip to main content

Hybrid Modeling for Systems Biology: Theory and Practice

  • Chapter
Large-Scale Networks in Engineering and Life Sciences

Abstract

Whereas bottom-up systems biology relies primarily on parametric mathematical models, which try to infer the system behavior from a priori specified mechanisms, top-down systems biology typically applies nonparametric techniques for system identification based on extensive “omics” data sets. Merging bottom-up and top-down into middle-out strategies is confronted with the challenge of handling and integrating the two types of models efficiently. Hybrid semiparametric models are natural candidates since they combine parametric and nonparametric structures in the same model structure. They enable to blend mechanistic knowledge and data-based identification methods into models with improved performance and broader scope. This chapter aims at giving an overview on theoretical fundaments of hybrid modeling for middle-out systems biology and to provide practical examples of applications, which include hybrid metabolic flux analysis on ill-defined metabolic networks, hybrid dynamic models with unknown reaction kinetics, and hybrid dynamic models of biochemical systems with intrinsic time delays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIC:

Akaike Information Criterion

ANN:

Artificial Neural Networks

BHK:

Baby Hamster Kidney

BIC:

Bayesian Information Criterion

DDE:

Delayed Differential Equation

EM:

Elementary Modes

EP:

Extreme Pathways

FBA:

Flux Balance Analysis

MFA:

Metabolic Flux Analysis

ODE:

Ordinary Differential Equation

PLS:

Projection to Latent Structure or Partial Least Squares

RFDE:

Retarded Functional Dynamic Equation

Sf9:

Spodoptera frugiperda

TF:

Transcription Factor

TFA:

Transcription Factor A

WSE:

Weighted Squares Error

c :

Vector of concentrations of intracellular compounds

d/dt :

Time derivative

D :

Dilution rate

e i :

Vectors of EMs

f(⋅):

Parametric mathematical function

F Glc :

Volumetric feeding rates of glucose

F Gln :

Volumetric feeding rates of glutamine

g(⋅):

Nonparametric mathematical function

h(⋅):

Function that combines the nonparametric and parametric model

N :

Matrix of stoichiometric coefficients

N D :

Number of data points

N est :

Stoichiometric matrix for v est

N mes :

Stoichiometric matrix for v mes

N ω :

Number of model parameters

r :

Volumetric reaction kinetics

V :

Culture volume

v :

Vector of reaction fluxes.

v Bac :

Flux of baculovirus synthesis

v est :

Estimated fluxes

v e :

Estimated fluxes of the reduced model

v mes :

Measured fluxes

X :

Model inputs

Y :

Model output/Model estimate

Y mes :

Experimentally measured Y

λ i :

Weighting factors of EMs

θ :

Parameters of the combining function h(⋅)

μ :

Specific growth rate

τ :

Time delay

\(\sigma_{Y}^{2}\) :

Variance of the experimental data for each output Y

ω :

Nonparametric model parameters

Ω :

Parametric model parameters

References

  1. Bergold, G.H., Wellington, E.F.: Isolation and chemical composition of the membranes of an insect virus and their relation to the virus and polyhedral bodies. J. Bacteriol. 67(2), 210–216 (1954)

    Google Scholar 

  2. Bernal, V., et al.: Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol. Bioeng. 104(1), 162–180 (2009)

    Article  Google Scholar 

  3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    Google Scholar 

  4. Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125(1–2), 183–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braake, H.A.B.t.’, van Can, H.J.L., Verbruggen, H.B.: Semi-mechanistic modeling of chemical processes with neural networks. Eng. Appl. Artif. Intell. 11(4), 507–515 (1998)

    Article  Google Scholar 

  6. Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends Microbiol. 15(1), 45–50 (2007)

    Article  Google Scholar 

  7. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002)

    Google Scholar 

  8. Carinhas, N., et al.: Improving baculovirus production at high cell density through manipulation of energy metabolism. Metab. Eng. 12(1), 39–52 (2010)

    Article  Google Scholar 

  9. Carinhas, N., et al.: Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products. BMC Syst. Biol. 5(1), 34 (2011)

    Article  Google Scholar 

  10. Daugulis, A.J., McLellan, P.J., Li, J.: Experimental investigation and modeling of oscillatory behavior in the continuous culture of Zymomonas mobilis. Biotechnol. Bioeng. 56(1), 99–105 (1997)

    Article  Google Scholar 

  11. Haerdle, W.K., et al.: Nonparametric and Semiparametric Models. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  12. Haykin, S.S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New York (1999)

    MATH  Google Scholar 

  13. Johansen, T.A., Foss, B.A.: Representing and learning unmodeled dynamics with neural network memories. In: Proc. American Control Conference (1992)

    Google Scholar 

  14. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14(5), 491–496 (2003)

    Article  Google Scholar 

  15. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  16. Kramer, M.A., Thompson, M.L., Bhagat, P.M.: Embedding theoretical models in neural networks. In: Proc. American Control Conference (1992)

    Google Scholar 

  17. Machado, D., et al.: Modeling formalisms in systems biology. AMB Express 1(1), 45 (2011)

    Article  Google Scholar 

  18. Nikolov, S., et al.: Dynamic properties of a delayed protein cross talk model. Biosystems 91(1), 51–68 (2008)

    Article  Google Scholar 

  19. Oliveira, R.: Combining first principles modelling and artificial neural networks: a general framework. Comput. Chem. Eng. 28(5), 755–766 (2004)

    Article  Google Scholar 

  20. Psichogios, D.C., Ungar, L.H.: A hybrid neural network-first principles approach to process modeling. AIChE J. 38(10), 1499–1511 (1992)

    Article  Google Scholar 

  21. Rateitschak, K., Wolkenhauer, O.: Intracellular delay limits cyclic changes in gene expression. Math. Biosci. 205(2), 163–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rollié, S., Mangold, M., Sundmacher, K.: Designing biological systems: systems engineering meets synthetic biology. Chem. Eng. Sci. 69(1), 1–29 (2012)

    Article  Google Scholar 

  23. Sauro, H.M., et al.: Challenges for modeling and simulation methods in systems biology. In: Winter Simulation Conference, pp. 1720–1730 (2006)

    Google Scholar 

  24. Schubert, J., et al.: Hybrid modelling of yeast production processes—combination of a priori knowledge on different levels of sophistication. Chem. Eng. Technol. 17(1), 10–20 (1994)

    Article  MathSciNet  Google Scholar 

  25. Smolen, P., Baxter, D.A., Byrne, J.H.: Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. Am. J. Physiol., Cell Physiol. 277(4), C777–C790 (1999)

    Google Scholar 

  26. Sontag, E.D.: Some new directions in control theory inspired by systems biology. Syst. Biol. 1(1), 9–18 (2004)

    Article  Google Scholar 

  27. Su, H.T., et al.: Integrating neural networks with first principles models for dynamic modeling. In: IFAC Symposium on Dynamics and Control of Chemical Reactors Distillation Columns and Batch Processes (1992)

    Google Scholar 

  28. Teixeira, A., et al.: Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinform. 8(1), 30 (2007)

    Article  Google Scholar 

  29. Teixeira, A.P., et al.: Hybrid semi-parametric mathematical systems: bridging the gap between systems biology and process engineering. J. Biotechnol. 132(4), 418–425 (2007)

    Article  Google Scholar 

  30. Thompson, M.L., Kramer, M.A.: Modeling chemical processes using prior knowledge and neural networks. AIChE J. 40(8), 1328–1340 (1994)

    Article  Google Scholar 

  31. Tian, T., et al.: Stochastic delay differential equations for genetic regulatory networks. J. Comput. Appl. Math. 205(2), 696–707 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Riel, N.A.W.: Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief. Bioinform. 7(4), 364–374 (2006)

    Article  Google Scholar 

  33. von Stosch, M., et al.: Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach. BMC Syst. Biol. 4(1), 131 (2010)

    Article  Google Scholar 

  34. Von Stosch, M., et al.: A novel identification method for hybrid (N)PLS dynamical systems with application to bioprocesses. Expert Syst. Appl. 38(9), 10862–10874 (2011)

    Article  Google Scholar 

  35. Von Stosch, M., et al.: Hybrid semi-parametric modeling in process systems engineering: past, present and future. Comput. Chem. Eng. 60, 86–101 (2013)

    Article  Google Scholar 

  36. Walter, E., Pronzato, L., Norton, J.: Identification of Parametric Models: From Experimental Data. Springer, Berlin (1997). Original French edition published by Masson, Paris, 1994

    MATH  Google Scholar 

  37. Wang, Y.-C., Chen, B.-S.: Integrated cellular network of transcription regulations and protein–protein interactions. BMC Syst. Biol. 4(1), 20 (2010)

    Article  Google Scholar 

  38. Wang, X., et al.: Hybrid modeling of penicillin fermentation process based on least square support vector machine. Chem. Eng. Res. Des. 88(4), 415–420 (2010)

    Article  Google Scholar 

  39. Wellington, E.F.: The amino acid composition of some insect viruses and their characteristic inclusion-body proteins. Biochem. J. 57(2), 334–338 (1954)

    Google Scholar 

  40. Wellstead, P., et al.: The role of control and system theory in systems biology. Annu. Rev. Control 32(1), 33–47 (2008)

    Article  Google Scholar 

  41. Wiechert, W.: Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94(1), 37–63 (2002)

    Article  Google Scholar 

  42. Wolkowicz, G.S.K., Xia, H.: Global asymptotic behavior of a chemostat model with discrete delays. SIAM J. Appl. Math. 57, 411–422 (1997)

    Google Scholar 

  43. Wolkowicz, G.S.K., Xia, H., Ruan, S.: Competition in the chemostat: a distributed delay model and its global asymptotic behavior. SIAM J. Appl. Math. 57, 1281–1310 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors M. von Stosch and N. Carinhas acknowledge financial support by the Fundação para a Ciência e a Tecnologia (Ref.: SFRH/BPD/84573 and SFRH/BPD/80514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

von Stosch, M., Carinhas, N., Oliveira, R. (2014). Hybrid Modeling for Systems Biology: Theory and Practice. In: Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K. (eds) Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08437-4_7

Download citation

Publish with us

Policies and ethics