Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits

  • Timo ReisEmail author
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We give a basic and self-contained introduction to the mathematical description of electrical circuits that contain resistances, capacitances, inductances, voltage, and current sources. Methods for the modeling of circuits by differential–algebraic equations are presented. The second part of this paper is devoted to an analysis of these equations.


Electrical circuits Modelling Differential–algebraic equations Modified nodal analysis Modified loop analysis Graph theory Maxwell’s equations 


  1. 1.
    Agricola, I., Friedrich, T.: Global Analysis: Differential Forms in Analysis, Geometry and Physics. Oxford University Press, Oxford (2002) Google Scholar
  2. 2.
    Anderson, B.D.O.: Minimal order gyrator lossless synthesis. IEEE Trans. Circuit Theory CT-20(1), 10–15 (1973) Google Scholar
  3. 3.
    Anderson, B.D.O., Newcomb, R.W.: Lossless n-port synthesis via state-space techniques. Technical Report 6558-8, Systems Theory Laboratory, Stanford Electronics Laboratories (1967) Google Scholar
  4. 4.
    Anderson, B.D.O., Newcomb, R.W.: Impedance synthesis via state-space techniques. Proc. IEEE 115, 928–936 (1968) Google Scholar
  5. 5.
    Anderson, B.D.O., Vongpanitlerd, S.: Scattering matrix synthesis via reactance extraction. IEEE Trans. Circuit Theory CT-17(4), 511–517 (1970) MathSciNetGoogle Scholar
  6. 6.
    Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs (1973) Google Scholar
  7. 7.
    Andrasfai, B.: Graph Theory: Flows, Matrices. Taylor & Francis, London (1991) zbMATHGoogle Scholar
  8. 8.
    Arnol’d, V.I.: Ordinary Differential Equations. Undergraduate Texts in Mathematics. Springer, Berlin (1992). Translated by R. Cooke zbMATHGoogle Scholar
  9. 9.
    Bächle, S.: Numerical solution of differential–algebraic systems arising in circuit simulation. Doctoral dissertation (2007) Google Scholar
  10. 10.
    Berger, T.: On differential–algebraic control systems. Doctoral dissertation (2013) Google Scholar
  11. 11.
    Berger, T., Reis, T.: Zero dynamics and funnel control for linear electrical circuits. J. Franklin Inst. (2014, accepted for publication) Google Scholar
  12. 12.
    Bodestedt, M., Tischendorf, C.: PDAE models of integrated circuits and perturbation analysis. Math. Comput. Model. Dyn. Syst. 13(1), 1–17 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential–Algebraic Equations. North-Holland, Amsterdam (1989) zbMATHGoogle Scholar
  14. 14.
    Cauer, W.: Die Verwirklichung der Wechselstromwiderstände vorgeschriebener Frequenzabhängigkeit. Arch. Elektrotech. 17, 355–388 (1926) CrossRefGoogle Scholar
  15. 15.
    Cauer, W.: Über Funktionen mit positivem Realteil. Math. Ann. 106, 369–394 (1932) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chua, L.O., Desoer, C.A., Kuh, E.S.: Linear and Nonlinear Circuits. McGraw-Hill, New York (1987) zbMATHGoogle Scholar
  17. 17.
    Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96. Springer, New York (1985) zbMATHGoogle Scholar
  18. 18.
    Deo, N.: Graph Theory with Application to Engineering and Computer Science. Prentice-Hall, Englewood Cliffs (1974) Google Scholar
  19. 19.
    Desoer, C.A., Kuh, E.S.: Basic Circuit Theory. McGraw-Hill, New York (1969) Google Scholar
  20. 20.
    Estévez Schwarz, D.: A step-by-step approach to compute a consistent initialization for the MNA. Int. J. Circuit Theory Appl. 30(1), 1–16 (2002) CrossRefzbMATHGoogle Scholar
  21. 21.
    Estévez Schwarz, D., Lamour, R.: The computation of consistent initial values for nonlinear index-2 differential–algebraic equations. Numer. Algorithms 26(1), 49–75 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Estévez Schwarz, D., Tischendorf, C.: Structural analysis for electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28(2), 131–162 (2000) CrossRefzbMATHGoogle Scholar
  23. 23.
    Günther, M., Feldmann, U.: CAD-based electric-circuit modeling in industry I. Mathematical structure and index of network equations. Surv. Math. Ind. 8, 97–129 (1999) zbMATHGoogle Scholar
  24. 24.
    Günther, M., Feldmann, U.: CAD-based electric-circuit modeling in industry II. Impact of circuit configurations and parameters. Surv. Math. Ind. 8, 131–157 (1999) zbMATHGoogle Scholar
  25. 25.
    Hairer, E., Lubich, Ch., Roche, M.: The Numerical Solution of Differential–Algebraic Equations by Runge–Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989) Google Scholar
  26. 26.
    Ho, C.-W., Ruehli, A., Brennan, P.A.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. CAS-22(6), 504–509 (1975) Google Scholar
  27. 27.
    Ilchmann, A., Reis, T.: Surveys in Differential–Algebraic Equations I. Differential–Algebraic Equations Forum, vol. 2. Springer, Berlin (2013) CrossRefzbMATHGoogle Scholar
  28. 28.
    Ipach, H.: Graphentheoretische Anwendungen in der Analyse elektrischer Schaltkreise. B.Sc. Thesis (2013) Google Scholar
  29. 29.
    Iwata, S., Takamatsu, M., Tischendorf, C.: Tractability index of hybrid equations for circuit simulation. Math. Comput. 81(278), 923–939 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999) zbMATHGoogle Scholar
  31. 31.
    Jänich, K.: Vector Analysis. Undergraduate Texts in Mathematics. Springer, New York (2001). Translated by L. Kay CrossRefGoogle Scholar
  32. 32.
    Johnson, D.E., Johnson, J.R., Hilburn, J.L.: Electric Circuit Analysis, 2nd edn. Prentice-Hall, Englewood Cliffs (1992) Google Scholar
  33. 33.
    Kunkel, P., Mehrmann, V.: Differential–Algebraic Equations. Analysis and Numerical Solution. EMS, Zürich (2006) CrossRefzbMATHGoogle Scholar
  34. 34.
    Küpfmüller, K., Kohn, G.: Theoretische Elektrotechnik und Elektronik: Eine Einführung. Springer, Berlin (1993) CrossRefGoogle Scholar
  35. 35.
    Lamour, R., März, R., Tischendorf, C.: Differential Algebraic Equations: A Projector Based Analysis. Differential–Algebraic Equations Forum, vol. 1. Springer, Heidelberg (2013) Google Scholar
  36. 36.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations, 1st edn. Springer, Wien (1990) CrossRefzbMATHGoogle Scholar
  37. 37.
    Marsden, J.E., Tromba, A.: Vector Calculus. W. H. Freeman, New York (2003) Google Scholar
  38. 38.
    März, R., Estévez Schwarz, D., Feldmans, U., Sturtzel, S., Tischendorf, C.: Finding beneficial DAE structures in circuit simulation. In: Krebs, H.J., Jäger, W. (eds.) Mathematics—Key Technology for the Future—Joint Projects Between Universities and Industry, pp. 413–428. Springer, Berlin (2003) Google Scholar
  39. 39.
    Newcomb, R.W.: The semistate description of nonlinear time-variable circuits. IEEE Trans. Circuits Syst. CAS-28, 62–71 (1981) MathSciNetCrossRefGoogle Scholar
  40. 40.
    Orfandis, S.J.: Electromagnetic waves and antennas (2010). Online:
  41. 41.
    Rabier, P.J., Rheinboldt, W.C.: A geometric treatment of implicit differential–algebraic equations. J. Differ. Equ. 109(1), 110–146 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Reis, T.: Systems theoretic aspects of PDAEs and applications to electrical circuits. Doctoral dissertation, Fachbereich Mathematik. Technische Universität, Kaiserslautern, Kaiserslautern (2006) Google Scholar
  43. 43.
    Reis, T.: Circuit synthesis of passive descriptor systems: a modified nodal approach. Int. J. Circuit Theory Appl. 38, 44–68 (2010) CrossRefzbMATHGoogle Scholar
  44. 44.
    Reis, T., Stykel, T.: PABTEC: passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(10), 1354–1367 (2010) CrossRefGoogle Scholar
  45. 45.
    Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10(1), 1–34 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Riaza, R.: Time-domain properties of reactive dual circuits. Int. J. Circuit Theory Appl. 34(3), 317–340 (2006) CrossRefzbMATHGoogle Scholar
  47. 47.
    Riaza, R.: Differential–Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Basel (2008) CrossRefzbMATHGoogle Scholar
  48. 48.
    Riaza, R.: Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Anal., Real World Appl. 12(6), 3674–3686 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Riaza, R.: Surveys in differential–algebraic equations I. In: DAEs in Circuit Modelling: A Survey. Differential–Algebraic Equations Forum, vol. 2, pp. 97–136. Springer, Berlin (2013) Google Scholar
  50. 50.
    Riaza, R., Encinas, A.J.: Augmented nodal matrices and normal trees. Math. Methods Appl. Sci. 158(1), 44–61 (2010) MathSciNetzbMATHGoogle Scholar
  51. 51.
    Riaza, R., Tischendorf, C.: Qualitative features of matrix pencils and DAEs arising in circuit dynamics. Dyn. Syst. 22(2), 107–131 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Riaza, R., Tischendorf, C.: The hyperbolicity problem in electrical circuit theory. Math. Methods Appl. Sci. 33(17), 2037–2049 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Riaza, R., Tischendorf, C.: Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39(6), 607–627 (2011) CrossRefzbMATHGoogle Scholar
  54. 54.
    Riaza, R., Tischendorf, C.: Structural characterization of classical and memristive circuits with purely imaginary eigenvalues. Int. J. Circuit Theory Appl. 41(3), 273–294 (2013) CrossRefGoogle Scholar
  55. 55.
    Shockley, W.: The theory of pn junctions in semiconductors and pn junction transistors. Bell Syst. Tech. J. 28(3), 435–489 (1947) CrossRefGoogle Scholar
  56. 56.
    Simeon, B.: Computational Flexible Multibody Dynamics: A Differential–Algebraic Approach. Differential–Algebraic Equations Forum, vol. 3. Springer, Heidelberg-Berlin (2013) CrossRefGoogle Scholar
  57. 57.
    Sternberg, S., Bamberg, P.: A Course in Mathematics for Students of Physics, vol. 2. Cambridge University Press, Cambridge (1991) Google Scholar
  58. 58.
    Takamatsu, M., Iwata, S.: Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation. Int. J. Circuit Theory Appl. 38, 419–440 (2010) zbMATHGoogle Scholar
  59. 59.
    Tao, T.: Analysis II. Texts and Readings in Mathematics, vol. 38. Hindustan Book Agency, New Delhi (2009) zbMATHGoogle Scholar
  60. 60.
    Tischendorf, C.: Mathematische Probleme und Methoden der Schaltungssimulation. Unpublished Lecture Notes Google Scholar
  61. 61.
    Tooley, M.: Electronic Circuits: Fundamentals and Applications. Newnes, Oxford (2006) Google Scholar
  62. 62.
    van der Schaft, A.J.: L 2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences, vol. 218. Springer, London (1996) CrossRefzbMATHGoogle Scholar
  63. 63.
    van der Schaft, A.J.: Surveys in differential–algebraic equations I. In: Port-Hamiltonian Differential–Algebraic Equations. Differential–Algebraic Equations Forum, vol. 2, pp. 173–226. Springer, Berlin (2013) Google Scholar
  64. 64.
    van der Schaft, A.J., Maschke, B.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51(2), 906–937 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Wedepohl, L.M., Jackson, L.: Modified nodal analysis: an essential addition to electrical circuit theory and analysis. Eng. Sci. Educ. J. 11(3), 84–92 (2002) CrossRefGoogle Scholar
  66. 66.
    Weiss, G., Staffans, O.J.: Maxwell’s equations as a scattering passive linear system. SIAM J. Control Optim. 51(5), 3722–3756 (2013). doi: 10.1137/120869444 MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Willems, J.C.: Realization of systems with internal passivity and symmetry constraints. J. Franklin Inst. 301, 605–621 (1976) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations