Skip to main content

Realms: A Structure for Consolidating Knowledge about Mathematical Theories

  • Conference paper
Intelligent Computer Mathematics (CICM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8543))

Included in the following conference series:

Abstract

Since there are different ways of axiomatizing and developing a mathematical theory, knowledge about a such a theory may reside in many places and in many forms within a library of formalized mathematics. We introduce the notion of a realm as a structure for consolidating knowledge about a mathematical theory. A realm contains several axiomatizations of a theory that are separately developed. Views interconnect these developments and establish that the axiomatizations are equivalent in the sense of being mutually interpretable. A realm also contains an external interface that is convenient for users of the library who want to apply the concepts and facts of the theory without delving into the details of how the concepts and facts were developed. We illustrate the utility of realms through a series of examples. We also give an outline of the mechanisms that are needed to create and maintain realms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carette, J., Farmer, W.M.: High-Level Theories. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 232–245. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Carette, J., Farmer, W.M., O’Connor, R.: MathScheme: Project description. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 287–288. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Carette, J., O’Connor, R.: Theory Presentation Combinators. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 202–215. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Farmer, W.M.: Biform Theories in Chiron. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 66–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Farmer, W.M.: Mathematical Knowledge Management. In: Schwartz, D., Te’eni, D. (eds.) Encyclopedia of Knowledge Management, 2nd edn., pp. 1082–1089. Idea Group Reference (2011)

    Google Scholar 

  6. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little Theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)

    Google Scholar 

  7. Halleck, J.: http://home.utah.edu/~nahaj/logic/structures/systems/s4.html (accessed: March 14, 2014)

  8. Hall, M.: The Theory of Groups. The Macmillan Company, New York (1959)

    MATH  Google Scholar 

  9. Kohlhase, M., Iancu, M.: Searching the Space of Mathematical Knowledge. In: Sojka, P., Kohlhase, M. (eds.) DML and MIR 2012. Masaryk University, Brno (2012) (in press) ISBN: 978-80-210-5542-1

    Google Scholar 

  10. Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups. Graduate Texts in Mathematics. Springer (1979)

    Google Scholar 

  11. Kohlhase, M., Rabe, F., Zholudev, V.: Towards MKM in the Large: Modular Representation and Scalable Software Architecture. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 370–384. Springer, Heidelberg (2010), arXiv:1005.5232v2 [cs.OH]

    Chapter  Google Scholar 

  12. Lawvere, W.F.: Functorial Semantics of Algebraic Theories. Reprints in Theory and Applications of Categories 4, 1–121 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Lack, S., Rosický, J.: Notions of Lawvere Theory. English. Applied Categorical Structures 19(1), 363–391 (2011), doi:10.1007/s10485-009-9215-2, ISSN: 0927-2852

    Google Scholar 

  14. Rabe, F.: The MMT Language and System, https://svn.kwarc.info/repos/MMT (visited on November 10, 2011)

  15. Peano, G.: Arithmetices principia nova methodo exposita. Bocca, Turin (1889)

    MATH  Google Scholar 

  16. Rabe, F., Kohlhase, M.: A Scalable Module System. Information & Computation (230), 1–54 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carette, J., Farmer, W.M., Kohlhase, M. (2014). Realms: A Structure for Consolidating Knowledge about Mathematical Theories. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08434-3_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08433-6

  • Online ISBN: 978-3-319-08434-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics