Advertisement

Structural Health Monitoring of Wind Turbine Blades

  • Hui LiEmail author
  • Wensong Zhou
  • Jinlong Xu
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

Wind turbine blades usually achieve a very long operating life of 20–30 years. During their operation, the blades encounter complex loading with a high number of cycles as well as severe weather. All of these factors result in accumulated damage, acceleration of fatigue damage, and even sudden blade failure, which can cause catastrophic damage to the wind turbine. In recent years, many structural health monitoring (SHM) techniques, including global and local methods, have been developed and applied as important and valid tools to detect the damage of wind turbine blades. This chapter provides a comprehensive review and analysis on the state of the art of SHM for blades. Then, the SHM techniques are described in detail. For the global method, this chapter discusses mainly the vibration-based damage detection problem for wind turbine blades given the rotation effects. For the local methods, a fatigue damage detection system used for wind turbine blade is developed using high spatial resolution differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) sensing system and PZT sensors is introduced to detect the tiny damage under static loading.

Keywords

Wind turbine blades Damage detection Vibration-based method DPP-BOTDA PZT 

Nomenclature

A

Section area of elements

bmax,k

The largest length of the signal curve of every time series as the interval time is k

bmin,k

The length of the signal curve which pass through no damaged region as the interval time is k

C

System damping matrix

E

Elastic modulus, the residual error

FDmax

The largest value of estimated FD of the curve of each time series

J

FD-based damage acuteness index

K

System stiffness matrix

Ks

The structural stiffness

Kd

The additional stiffness

K0

Is the normal modal stiffness matrix

K1(α)

The stiffness matrix of the geometric nonlinearities

L

The length of time series of PZT signal

M

System mass matrix

n

The degrees of freedom of the structure, the refractive index of the fiber core

NI

The damage index based on PCA method

\(\bar{NI}\)

The mean value of NI

t

Time

T

The loading matrix

u0

The displacement in x direction

v

The external force

Va

The velocity of the acoustic wave

\(\nu_{\text{B}}\)

The Brillouin frequency shift

v0

The displacement in y direction

X

The scores matrix

\(\hat{X}\)

The reconstructed data

Y

The compressed data

Z

The displacements of the degrees of freedom of the structure

\(\dot{Z}\)

The velocities of the degrees of freedom of the structure

\(\mathop Z\limits^{..}\)

The accelerations of the degrees of freedom of the structure

U

The potential energy of strain

α

The modal coordinate, the first Rayleigh damping coefficients

β

The second Rayleigh damping coefficients

\(\varepsilon\)

The normal strain

\(\lambda\)

The eigenvalues, the vacuum wavelength of the pump light

σ

Standard deviation

ω

The angular frequency

[]

The Gauss’ notation

References

  1. 1.
    Schroeder K, Ecke W, Apitz J et al (2006) A Fibre Bragg Grating sensor system monitors operational load in a wind turbine rotor blade. Meas Sci Technol 17(5):1167–1172CrossRefGoogle Scholar
  2. 2.
    Krämer SGM, Wiesent B, Müller MS et al (2008) Fusion of a FBG-based health monitoring system for wind turbines with a Fiber-optic lightning detection system. In: Proceeding of SPIE 7004, 19th international conference on optical fibre sensors, 70040O; doi: 10.1117/12.783602
  3. 3.
    Ecke W, Schröder K (2008) Fiber Bragg Grating sensor system for operational load monitoring of wind turbine blades. In: Proceeding of SPIE 6933, Smart Sensor Phenomena, Technology, Networks and Systems, 69330I; doi: 10.1117/12.783602
  4. 4.
    Bang H-J, Shin H-K, Ju Y-C (2010) Structural health monitoring of a composite wind turbine blade using Fiber Bragg Grating sensors. In: Proceeding of SPIE 7647, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 76474H; doi: 10.1117/12.847557
  5. 5.
    Krebber K, Habel W, Gutmann T et al (2005) Fiber Bragg Grating sensors for monitoring of wind turbine blades. Proc SPIE 5855:1036–1039CrossRefGoogle Scholar
  6. 6.
    Eum SH, Kageyama K, Murayama H et al (2008) Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing Techniques. Proc SPIE 7004:70045BCrossRefGoogle Scholar
  7. 7.
    Rohrmann RG, Rucker W, Thons S (2007) Integrated monitoring systems for offshore wind turbines. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, USGoogle Scholar
  8. 8.
    Mcgugan M, Sorensen BF (2007) Fundamentals for remote condition monitoring of offshore wind turbine blades. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, USGoogle Scholar
  9. 9.
    Joosse P, Blanch M, Dutton A et al (2002) Acoustic emission monitoring of small wind turbine blades. J SolEnergy Eng 124(4):446–454Google Scholar
  10. 10.
    Blanch M, Dutton A (2003) Acoustic emission monitoring of field tests of an operating wind turbine. In: Proceedings of the 5th international conference on damage assessment of structures. Southampton, UKGoogle Scholar
  11. 11.
    Kirikera GR, Schulz MJ, Sundaresan MJ (2007) Multiple damage identification on a wind turbine blade using a structural neural system. Proc SPIE 6530:65300TCrossRefGoogle Scholar
  12. 12.
    Rumsey MA, Paquette JA (2008) Structural health monitoring of wind turbine blades. Proc SPIE 6933:69330ECrossRefGoogle Scholar
  13. 13.
    Zhou W, Huang Y, Li H (2008) Damage propagation monitoring of composite blade under static loading. In: Proceeding of 2nd Asia-Pacific workshop on structural health monitoring. Melbourne, AustraliaGoogle Scholar
  14. 14.
    Sundaresan MJ, Schulz MJ, Ghoshal A (2002) Structural health monitoring static test of a wind turbine blade. National Renewable Energy Laboratory March, Subcontractor Report NREL/SR-500-28719Google Scholar
  15. 15.
    Frankenstein B, Schubert L, Meyendorf N (2009) Monitoring system of wind turbine rotor blades. Proc SPIE 7293:72930XCrossRefGoogle Scholar
  16. 16.
    Gross E, Simmermacher T, Rumsey M et al (1999) Application of damage detection techniques uing wind turbine modal data. American society of mechanical engineers wind energy symposium, AIAA 99-0047: 230-235Google Scholar
  17. 17.
    Ghoshal A, Sundaresan MJ, Schulz MJ (2000) Structural health monitoring techniques for wind turbine blades. J Wind Eng Ind Aerodyn 85:309–324CrossRefGoogle Scholar
  18. 18.
    Kraemer P, Fritzen CP (2007) Concept for structural damage identification of offshore wind energy plants. In: Proceedings of the sixth international workshop on structural health monitoring. Stanford, USGoogle Scholar
  19. 19.
    Whelan MJ, Janoyan KD, Qiu T (2008) Integrated monitoring of wind plant systems. In: Proceeding of SPIE 6933, smart sensor phenomena, technology, networks, and systems, 69330F. doi:  10.1117/12.776753
  20. 20.
    Dolinski L, Krawczuk M (2009) Damage detection in turbine wind blades by vibration based methods. J Phys Conf Ser 181:12–86CrossRefGoogle Scholar
  21. 21.
    Peeters B, Maeck J, Roeck GD (2001) Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater Struct 10(3):518CrossRefGoogle Scholar
  22. 22.
    Peeters B, Roeck GD (2001) One-year monitoring of the Z24-bridge: environmental effects versus damage events. Earthquake Eng Struct Dynam 30(2):149–171CrossRefGoogle Scholar
  23. 23.
    Yan AM, Kerschen G, Boe PD, Golinval JC (2005) Structural damage diagnosis under varying environmental conditions - part I: a linear analysis. Mech Syst Sig Process 19(4):847–864CrossRefGoogle Scholar
  24. 24.
    Yan AM, Kerschen G, Boe PD, Golinval JC (2005) Structural damage diagnosis under varying environmental conditions - part II: local PCA for non-linear cases. Mech Syst Sig Process 19(4):865–880CrossRefGoogle Scholar
  25. 25.
    Xia Y, Hao H, Zanardo G, Deeks A (2006) Long term vibration monitoring of an RC slab: temperature and humidity effect. Eng Struct 28(3):441–452CrossRefGoogle Scholar
  26. 26.
    Kim JT, Park JH, Lee BJ (2006) Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng Struct 29(7):1354–1365CrossRefMathSciNetGoogle Scholar
  27. 27.
    Liu C, DeWolf JT (2007) Effect of temperature on modal variability of a curved concrete bridge under ambient loads. J Struct Eng 133(12):1742–1751CrossRefGoogle Scholar
  28. 28.
    Deraemaeker A, Reynders E, Roeck GD et al (2008) Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Sig Process 22(1):34–56CrossRefGoogle Scholar
  29. 29.
    Balmes E, Basseville M, Bourquin F et al (2008) Merging sensor data from multiple temperature scenarios for vibration monitoring of civil structures. Struct Health Monit 7(2):129–142CrossRefGoogle Scholar
  30. 30.
    Basseville M, Bourquin F, Mevel L (2010) Handling the temperature effect in vibration monitoring: two subspace-based analytical approaches. J Eng Mech 136(3):367–378CrossRefGoogle Scholar
  31. 31.
    Yoo HH, Shin SH (1998) Vibration analysis of rotating cantilever beams. J Sound Vib 212(5):807–828CrossRefGoogle Scholar
  32. 32.
    Bucher I, Ewins DJ (2001) Modal analysis and testing of rotating structures. Philos Trans Roy Soc London Ser A Math Phys Eng Sci 359(1778):61–96CrossRefzbMATHGoogle Scholar
  33. 33.
    Osgood RM (2001) Dynamic characterization testing of wind turbines. Technical Report, National Renewable Energy Laboratory, NREL/TP-500-30070, 2001Google Scholar
  34. 34.
    Park JH, Park HY, Jeong SY (2010) Linear vibration analysis of rotating wind-turbine blade. Curr Appl Phys 10(2, Supplement 1):332–334Google Scholar
  35. 35.
    Sohn H, Czarnecki JA, Farrar CR (2000) Structural health monitoring using statistical process control. J Struct Eng 126(11):1356–1363CrossRefGoogle Scholar
  36. 36.
    Sohn H, Farrar CR, Hunter NF (2001) Structural health monitoring using statistical pattern recognition techniques. J Dyn Syst Meas Contr 123(4):706–711CrossRefGoogle Scholar
  37. 37.
    Lei Y, Kiremidjian AS, Nair KK et al (2003) Statistical damage detection using time series analysis on a structural health monitoring benchmark problem. In: Proceedings of the 9th international conference on applications of statistics and probability in civil engineering. San Francisco, CA, USAGoogle Scholar
  38. 38.
    Basseville M, Mevel L, Goursat M (2004) Statistical model-based damage detection and localization: subspaced-based residuals and damage-to-noise sensitivity ratios. J Sound Vib 275(3–5):769–794CrossRefGoogle Scholar
  39. 39.
    Kane TR, Ryan RR, Banerjee AK (1987) Dynamics of a cantilever beam attached to a moving base. J Guid Control Dyn 10:139–151CrossRefGoogle Scholar
  40. 40.
    Bakr EM, Shabana AA (1986) Geometrically nonlinear analysis of multibody system. Comp Struct 23:739–751CrossRefzbMATHGoogle Scholar
  41. 41.
    Wallrapp O, Schwertassek R (1991) Representation of geometric stiffening in multibody system simulation. Int J Numer Meth Eng 32:1833–1850CrossRefzbMATHGoogle Scholar
  42. 42.
    Mayo J, Dominguez J, Shabana AA (1995) Geometrically nonlinear formulation of beams in flexible multibody dynamics. J Vibr Acoust 117(4):501–509CrossRefGoogle Scholar
  43. 43.
    Park S, Lee J-J, Yun C-B, Inman DJ (2008) Electro-mechanical impedance-based wireless structural health monitoring using PCA-Data compression and k-means clustering algorithms. J Intell Mater Syst Struct 19(4):509–520CrossRefGoogle Scholar
  44. 44.
    Han S, Feeny BF (2002) Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures. J Vib Control 8(1):19–40CrossRefzbMATHGoogle Scholar
  45. 45.
    Mei C, Fan J (2006) Methods for data analysis. Higher Education Press, BeijngGoogle Scholar
  46. 46.
    Ma J, Niu Y, Chen H (2006) Blind signal processing. National Defense Industry Press, BeijingGoogle Scholar
  47. 47.
    Bao X, Chen L (2011) Recent progress in Brillouin scattering based fiber sensors. Sensors 11(4):4152–4187CrossRefGoogle Scholar
  48. 48.
    Horiguchi T, Tateda M (1989) Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt Lett 14:408–410CrossRefGoogle Scholar
  49. 49.
    Li W, Bao X, Li Y et al (2008) Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16:21616–21625CrossRefGoogle Scholar
  50. 50.
    Dong Y, Bao X, Li W (2009) Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor. Appl Opt 48:4297–4301CrossRefGoogle Scholar
  51. 51.
    Cotter D (1983) Stimulated Brillouin scattering in monomode optical fiber. J Opt Commun 4(1):10–19CrossRefGoogle Scholar
  52. 52.
    Horiguchi T, Shimizu K, Kurashima T et al (1995) Development of a distributed sensing technique using Brillouin scattering. J Lightw Technol 13(7):296–302Google Scholar
  53. 53.
    White D (2004) New method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading. National Renewable Energy Laboratory, NREL/TP-500-35268Google Scholar
  54. 54.
    Minakuchi S et al (2009) Barely visible impact damage detection for composite sandwich structures by optical-fiber-based distributed strain measurement. Smart Mater Struct 18(8):085018CrossRefGoogle Scholar
  55. 55.
    Minakuchi S et al (2011) Life cycle monitoring of large-scale CFRP VARTM structure by fiber-optic-based distributed sensing. Compos A 42(6):669–676CrossRefGoogle Scholar
  56. 56.
    Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Physica D 31(2):277–283CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Civil EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations