Design of Robust Controllers for Load Reduction in Wind Turbines

  • Asier Díaz de CorcueraEmail author
  • Aron Pujana-Arrese
  • Jose M. Ezquerra
  • Aitor Milo
  • Joseba Landaluze
Part of the Advances in Industrial Control book series (AIC)


This chapter proposes a methodology to design robust control strategies for wind turbines. The designed controllers are robust, multivariable and multi-objective to guarantee the required levels of stability and performance considering the coupling of the wind turbine. The proposed robust controllers generate collective pitch angle, individual pitch angle and generator torque control signals to regulate the electrical power production in the above rated power production zone and to mitigate the loads in the components of the wind turbines, like the drive train, tower, hub or blades, to increase their lifetime. The synthesis of these controllers is based on the H norm reduction and gain scheduling control techniques via Linear Matrix Inequalities. A wind turbine non-linear model has been developed in the GH Bladed software package and it is based on a 5 MW wind turbine defined in the Upwind European project. The family of linear models extracted from the linearization process of the non-linear model is used to design the proposed robust controllers. The designed controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.


Wind turbine Robust control Multivariable control H control Load mitigation 



State space matrices of system n


Tower top fore-aft acceleration


Tower top side-to-side acceleration


Coleman transformation


Anti-Coleman transformation


Scalar constant in the control x channel


Scalar constant in the output x channel


Scalar constant in the disturbance x channel


Generator speed error


Optimum constant in below rated zone


Blade root out-of-plane moment


Blade root flapwise moment


Blade root edgewise moment


Tilt moment in the rotor plane


Yaw moment in the rotor plane


Varying parameter


Generator torque


Torque contribution from drive train damping filter


Torque set-point in below rated zone


Generator torque set-point




Generator speed


Pitch angle set-point


Collective pitch angle


Pitch contribution from tower fore-aft damping filter


Pitch tilt angle in the rotor plane


Pitch yaw angle in the rotor plane


Azimuth angle


Twist angle in the blade root section



The material used in this chapter was partly supported by the Spanish Ministry of Economy and Competitiveness and European FEDER funds (research project DPI2012-37363-C02-02).


  1. 1.
    Jonkman JM, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. NREL Technical Report NREL/TP-500-38060Google Scholar
  2. 2.
    Díaz de Corcuera A (2013) Design of robust controller for load reduction in wind turbines. Thesis. University of Mondragon, The Basque Country, Spain, 2013Google Scholar
  3. 3.
    Díaz de Corcuera A, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J (2012) H based control for load mitigation in wind turbines. Energies 2012(5):938–967CrossRefGoogle Scholar
  4. 4.
    Díaz de Corcuera A, Nourdine S, Pujana-Arrese A, Camblong H, Landaluze J (2011) GH BLADED’S linear models based H-infinity controls for off-shore wind turbines. In: EWEA Offshore 2011. Nov 2011. Amsterdam (Holland)Google Scholar
  5. 5.
    Díaz de Corcuera A, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J (2012) Wind turbine load mitigation based on multivariable robust control and blade root sensors. In: The Science of Making Torque from Wind. October 2012. Oldenburg (Germany)Google Scholar
  6. 6.
    International Standard IEC 61400-1 Second Edition 1999-02 Wind turbine generator systems. Part 1: Safety requirementsGoogle Scholar
  7. 7.
    Bossanyi EA (2000) The design of closed loop controllers for wind turbines. Wind Energy 3(3):149–163Google Scholar
  8. 8.
    Laks JH, Pao LY, Wright A (2009) Control of wind turbines: past, present, and future. In: American control conference 2009. June 2009. St. Louis (USA)Google Scholar
  9. 9.
    Pao LY, Johnson KE (2009) A tutorial on the dynamics and control of wind turbines and wind farms.In: American control conference 2009. June 2009. St. Louis (USA)Google Scholar
  10. 10.
    Bossanyi EA (2009) Controller for 5 MW reference turbine. European Upwind Project Report. Accessed Feb 2013
  11. 11.
    Schaak P, Corten GP, van der Hooft EL (2003) Crossing resonance rotor speeds of wind turbines. ECN Wind Energy, Paper ECN-RX–03-041Google Scholar
  12. 12.
    Van der Hooft EL, Schaak P, van Engelen TG (2003) ECN Technical Report. DOWEC-F1W1-EH-03-0940Google Scholar
  13. 13.
    Caselitz P, Geyler M, Giebhardt J, Panahandeh B (2011) Hardware-in-the-Loop development and testing of new pitch control algorithms. In: Proceeding of European wind energy conference and exhibition (EWEC), Brussels, Belgium, Mar 2011; pp 14–17Google Scholar
  14. 14.
    Johnson KE, Pao LY, Balas MJ, Kulkarni V, Fingersh LJ (2004) Stability analysis of an adaptive torque controller for variable speed wind turbines. In: Proceeding of IEEE conference on decision and control, Atlantis, Bahamas, Dec 2004; pp 14–17Google Scholar
  15. 15.
    Nourdine S, Díaz de Corcuera A, Camblong H, Landaluze J, Vechiu I, Tapia G (2011) Control of wind turbines for frequency regulation and fatigue loads reduction. In: Proceeding of 6th Dubrovnik conference on sustainable development of energy, water and environment systems, Dubrovnik, Croatia, Sept 2011; pp 25–29Google Scholar
  16. 16.
    Sanz MG, Torres M (2004) Aerogenerador síncrono multipolar de velocidad variable y 1.5 MW de potencia: TWT1500. Rev. Iberoamer. Automática Informática 1:53–64Google Scholar
  17. 17.
    Bianchi FD, Battista HD, Mantz RJ (2007) Wind turbine control systems. In: Principles, modelling and gain scheduling design. Springer, LondonGoogle Scholar
  18. 18.
    Díaz de Corcuera A, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J (2013) Linear models based LPV (Linear parameter varying) control algorithms for wind turbines. EWEA 2013. Jan 2013. Vienna (Austria)Google Scholar
  19. 19.
    Geyler M, Caselitz P (2008) Robust multivariable pitch control design for load reduction on large wind turbines. J Sol Energy Eng 2008(130):12Google Scholar
  20. 20.
    Fleming PA, van Wingerden JW, Scholbrock AK, van der Veen G (2013) Field testing a wind turbine drivetrain/tower damper using advanced design and validation techniques. In: American control conference (ACC) 2013 (Washington: USA)Google Scholar
  21. 21.
    Iribas M, Landau (2009) Closed loop identification of wind turbines models for pitch control. In: 17th Mediterranean conference on control and automaton. June 2009. Thessaloniki (Greecce)Google Scholar
  22. 22.
    Iribas M (2011) Wind turbine identification in closed loop operation. European Upwind Project Report. Accessed Feb 2013
  23. 23.
    Garrad Hassan GL (2011) V4 Bladed Theory Manual. ©Garrad Hassan & Partners Ltd, BristolGoogle Scholar
  24. 24.
    Jonkman JM, Marshall L, Buhl Jr (2005) FAST user’s guide. NREL Technical Report NREL/TP-500-38230Google Scholar
  25. 25.
    Harris M, Hand M, Wright A (2005) LIDAR for turbine control. NREL Technical Report NREL/TP-500-39154Google Scholar
  26. 26.
    Van der Hooft EL, Schaak P, van Engelen TG (2003) Wind Turbine Control Algorithms; DOWEC-F1W1-EH-03094/0; Technical Report for ECN: Petten, The Netherlands, 2003Google Scholar
  27. 27.
    Ogata K (1993) Ingeniería de Control Moderna, 2 edn. Pearson Prentice Hall, MexicoGoogle Scholar
  28. 28.
    Bossanyi EA (2003) Wind turbine control for load reduction. Wind Energy 2003(6):229–244CrossRefGoogle Scholar
  29. 29.
    Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback control theory. MacMillan, New YorkGoogle Scholar
  30. 30.
    Scherer CW, El Ghaoui L, Niculescu S (eds) (2000) Robust mixed control and LPV control with full block scaling. In: Recent advances on LMI methods in control, SIAM (2000)Google Scholar
  31. 31.
    Balas G, Chiang R, Packard A, Safonov M (2010) Robust control toolbox. User’s guide Mathworks. Accessed Feb 2013
  32. 32.
    Skogestad S, Postlethwaite I (2010) Mutivariable feedback control. Analysis and design, 2 edn. Willey, ChichesterGoogle Scholar
  33. 33.
    Rugh WJ, Shamma JS (2000) Research on gain scheduling. Automatica 36(10):1401–1425CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Bianchi FD, Mantz RJ, Christiansen CF (2004) Control of variable-speed wind turbines by LPV gain scheduling. Wind Energy 7(1):1–8CrossRefGoogle Scholar
  35. 35.
    Díaz de Corcuera A, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J (2012) LPV model of wind turbines from GH Bladed’s linear models. In: 26th European conference on modelling and simulation. ECMS 2012. May 2012. Koblenz (Germany)Google Scholar
  36. 36.
    Ostergaard KZ, Brath P, Stoustrup J (2008) Linear parameter varying control of wind turbines covering both partial load and full load conditions. Int J Robust Nonlinear Control 19:92–116CrossRefMathSciNetGoogle Scholar
  37. 37.
    Bianchi FD, Sanchez Peña RS (2011) Interpolation for gain-scheduled control with guarantees. Automatica 47:239–243Google Scholar
  38. 38.
    Van Engelen TG, van del Hooft EL (2005) Individual pitch control inventory. ECN-C-030-138. Technical report for ECN. The Netherlands, 2005Google Scholar
  39. 39.
    Bossanyi EA, Wright A, Fleming P (2010) Controller field tests on the NREL CART2 Turbine. NREL/TP-5000-49085. Technical Report for NREL. Colorado, CO, USA, Dec 2010Google Scholar
  40. 40.
    Bossanyi EA, Wright A, Fleming P (2013) Validation of individual pitch control by field tests on two- and three-bladed wind turbines. IEEE Trans Control Systems Technol 21(2):1067–1078Google Scholar
  41. 41.
    Stol KA, Zhao W, Wright AD (2006) Individual blade pitch control for the controls advanced research turbine (CART). J Sol Energy Eng 128(2):498–505Google Scholar
  42. 42.
    Wortmann S, (2010) REpower field test of active tower damping. In: European Upwind Project Report; Garrad Hassan & Partners Ltd., Bristol, UKGoogle Scholar
  43. 43.
    Heß F, Seyboth G (2010) Individual Pitch Control with tower side-to-side damping. In: Proceeding of 10th German wind energy conference, Bremen (Germany), Nov 2010Google Scholar
  44. 44.
    Nam Y (2011) Control system design, wind turbines. Ibrahim Al-Bahadly (ed), ISBN: 978-953-307-221-0Google Scholar
  45. 45.
    Coleman RP, Feingold AM (1957) Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades. NASA TN 3844, NASA, 1957Google Scholar
  46. 46.
    Garrad Hassan GL (2011) V4 Bladed User Manual. ©Garrad Hassan & Partners Ltd, ChichesterGoogle Scholar
  47. 47.
    Frandsen ST (2007) Turbulence and turbulence generated structural loading in wind turbine clusters. Ph.D. Thesis, Technical University of Denmark, Roskilde, Denmark, 2007Google Scholar
  48. 48.
    Söker H, Kaufeld N (2004) Introducing low cycle fatigue in IEC standard range pair spectra. In: Proceeding of 7th German wind energy conference, Wilhelmshaven, Germany, Oct 2004; pp 2021Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Asier Díaz de Corcuera
    • 1
    Email author
  • Aron Pujana-Arrese
    • 1
  • Jose M. Ezquerra
    • 1
  • Aitor Milo
    • 1
  • Joseba Landaluze
    • 1
  1. 1.IK4-IKERLANArrasate-MondragonSpain

Personalised recommendations