Skip to main content

Maximum Power Point Tracking Control of Wind Energy Conversion Systems

  • Chapter
  • First Online:
  • 3042 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter studies the control problems in grid integration of wind energy conversion systems. Sliding-mode control technique will be used to optimize the control of wind energy conversion systems. The maximum power point tracking control algorithms for variable-speed wind energy conversion systems are presented. The grid integration of wind energy conversion systems can be optimized in terms of power delivered to the grid and providing the voltage support ancillary service at the point of common coupling. The control objective for the grid integration of wind energy conversion systems is to keep the DC-link voltage in a desirable value and the input or output power factors staying unitary. The high-order terminal sliding-mode voltage and current regulators are designed, respectively, to control the DC-link voltage and the current rapidly and exactly. The numerical simulations will be carried out to evaluate the control schemes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\(P_w\) :

Input power to the wind turbine

\(r\) :

Wind turbine radius

\(v_w\) :

Wind speed

\(\rho\) :

Air density

\(P_m \) :

Mechanical power

\(C_p\) :

Power coefficient

\(\beta\) :

Pitch angle

\(\lambda\) :

Tip speed ratio

\(\omega_w\) :

Turbine angular speed

P, Q :

Active and reactive power for the induction generator

\(i_{ds}, i_{qs}\) :

Stator currents in d-q axes

\(u_{ds},u_{qs}\) :

Stator voltages in d-q axes

L :

Inductor of the grid side filter

R :

Resistance of the grid side filter

C :

DC-link capacitor

\(i_d, i_q\) :

d- and q-axis current components of the converter

\(s_d, s_q\) :

d- and q-axis switching control signals

\(e_d, e_q\) :

d- and q-axis voltage component of the three-phase supply

\(\omega\) :

Angular frequency of the power source

\(P_{ac}, P_{dc}\) :

Active power of AC and DC sides

References

  1. REN21 (2011) Renewables 2011: Global Status Report. http://www.ren21.net/Portals/97/documents/GSR/GSR2011_Master18.pdf

  2. The Encyclopedia (2011) wind energy conversion system. http://www.daviddarling.info/encyclopedia/W/AE_wind_energy_conversion_system.html

  3. Thongam JS, Bouchard P, Beguenane R, Fofana I (2010) Neural network based wind speed sensorless MPPT controller for variable-speed wind energy conversion systems. In: Proceedings of IEEE electric power energy conference: “sustainable energy intelligent grid”, Halifax, NS, USA, 25–27 Aug 2010

    Google Scholar 

  4. De Battista H, Mantz RJ, Christiansen CF (2000) Dynamical sliding mode power control of wind driven induction generators. IEEE Trans Energy Convers 15(4):451–457

    Article  Google Scholar 

  5. Susperregui A, Tapia G, Martinez MI, Blanco A (2011) Second-order sliding-mode controller design and tuning for grid synchronization and power control of a wind turbine-driven DFIG. In: Proceedings of the IET conference on renewable power generation (RPG 2011), Edinburgh, UK, 6–8 Sept 2011

    Google Scholar 

  6. Hasanien HM, Muyeen SM (2012) Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Electr Power Syst Res 84(1):206–213

    Article  Google Scholar 

  7. Yu X, Man Z (1996) Model reference adaptive control systems with terminal sliding modes. Int J Control 64(6):1165–1176

    Article  MATH  MathSciNet  Google Scholar 

  8. Feng Y, Zheng J, Yu X, Truong NV (2009) Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system. IEEE Trans Ind Electron 56(9):3424–3431

    Google Scholar 

  9. Feng Y, Yu X, Han F (2013) On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6):1715–1722

    Article  MathSciNet  Google Scholar 

  10. Feng Y, Han X, Wang Y, Yu X (2007) Second-order terminal sliding mode control of uncertain multivariable systems. Int J Control 80(6):856–862

    Article  MATH  MathSciNet  Google Scholar 

  11. Feng Y, Bao S, Yu X (2004) Inverse dynamics nonsingular terminal sliding mode control of two-link flexible manipulators. Int J Robot Autom 19(2):91–102

    Google Scholar 

  12. Feng Y, Yu XH, Man ZH (2002) Nonsingular adaptive terminal sliding mode control of rigid manipulators. Automatica 38(12):2167–2179

    Article  MathSciNet  Google Scholar 

  13. Feng Y, Yu X, Han F (2013) High-order terminal sliding-mode observer for parameter estimation of a permanent magnet synchronous motor. IEEE Trans Ind Electron 60(10):4272–4280

    Article  Google Scholar 

  14. Anderson PM, Bose A (1983) Stability simulation of wind turbine systems. IEEE Power Appar Syst PAS-102(12):3791–3795

    Google Scholar 

  15. Ghanes M, Zheng G (2009) On sensorless induction motor drives: sliding-mode observer and output feedback controller. IEEE Trans Ind Electron 56(9): 3404–3413

    Google Scholar 

  16. Feng Y, Zhou M, Wang Y, Yang Y (2013) High-order terminal sliding-mode control strategy for wind energy Integration into power network. In: Proceedings of the 32nd chinese control conference (CCC), Xi’an, China, 26–28 Jul 2013, pp 3186–3189

    Google Scholar 

  17. Malesani L, Rossetto L, Tomasin P (1993) AC/DC/AC PWM Converter with Minimum Energy Storage in the DC Link. In: Proceedings of IEEE applied power electronics conference APEC’93, San Diego, CA, USA, 7–11 Mar 1993, pp 306–311

    Google Scholar 

  18. Blasko V, Kaura V (1997) A new mathematical model and control of three-phase AC-DC voltage source converter. IEEE Trans Power Electron 12(1):116–123

    Article  Google Scholar 

  19. Green AW, Boys JT (1989) Hysteresis current-forced three-phase voltage-sourced reversible rectifier. IEEE Trans Power Electron 136(3):113–120

    Google Scholar 

  20. Kazmierkowski MP, Cichowlas M, Jasinski M (2003) Artificial intelligence based controllers for industrial PWM power converters. In: Proceedings of the IEEE international conference industrial informatics, Banff, Alta., Canada, 21–24 Aug 2003, pp 187–191

    Google Scholar 

  21. Konstantopoulos GC (2012) “Novel dynamic nonlinear control scheme for three-phase AC/DC voltage source converters. In: Proceedings of 2012 IEEE international conference industrial technology, ICIT 2012, Athens, Greece, 19–21 Mar 2012, pp 638–643

    Google Scholar 

  22. Lee TS (2003) Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Trans Power Electron 18:11–22

    Article  Google Scholar 

  23. Deng WH, Hu ZB (2005) “The research of decoupled state variable feedback linearization control method of three-phase voltage source PWM rectifier. Proc CSEE (China) 25(7):97–103

    Google Scholar 

  24. Komurcugil H, Kukrer O (2005) A novel current-control method for three-phase PWM AC/DC voltage-source converters. IEEE Trans Ind Electron 46(3):544–553

    Article  Google Scholar 

  25. Chen B, Feng Y, Zhou M (2013) Terminal sliding-mode control scheme for grid-side PWM converter of DFIG-based wind power system. In: Proceedings of 39th annual conference of the IEEE industrial electronics society (IECON 2013), Vienna, Austria, 10-13 Nov 2013, pp 8014–8018

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61074015), and also in part by ARC Linkage Project (LP100200538) of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feng, Y., Yu, X. (2014). Maximum Power Point Tracking Control of Wind Energy Conversion Systems. In: Luo, N., Vidal, Y., Acho, L. (eds) Wind Turbine Control and Monitoring. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-08413-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08413-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08412-1

  • Online ISBN: 978-3-319-08413-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics