High-Order Sliding Mode Control of DFIG-Based Wind Turbines

  • Mohamed BenbouzidEmail author
Part of the Advances in Industrial Control book series (AIC)


Actually, variable speed wind turbines are continuously increasing their market share, since it is possible to track the changes in wind speed by adapting shaft speed, and thus maintaining optimal power generation. The more variable speed wind turbines are investigated, the more it becomes obvious that their behavior is significantly affected by the used control strategy. Typically, they use aerodynamic controls in combination with power electronics to regulate torque, speed, and power. The aerodynamic control systems, usually variable-pitch blades or trailing-edge devices, are expensive and complex, especially for larger turbines. This situation provides a motivation to consider alternative control approaches. This chapter deals, therefore, with high-order sliding mode control of doubly-fed induction generator-based wind turbines. This kind of control strategy presents attractive features such as chattering-free behavior (no extra mechanical stress), finite reaching time, and robustness with respect to external disturbances (grid faults) and unmodeled dynamics (generator and turbine). High-sliding mode control appropriateness will be highlighted in terms of sensorless control and enhanced fault-ride through capabilities. Simulations using the NREL FAST code will be shown for validation purposes.


Wind turbine Doubly-fed induction generator High-order sliding modes High-gain observer Control Sensorless control 



Wind turbine


Doubly-fed induction generator


High-order sliding mode


Maximum power point tracking


Fault ride-through


Low-voltage ride-through


Wind speed (m/sec)


Air density (kg/m3)


Rotor radius (m)


Aerodynamic power (W)


Aerodynamic torque (Nm)


Tip speed ratio (TSR)


Power coefficient


Pitch angle


WT rotor speed (rad/sec)


Generator speed (rad/sec)


Generator electromagnetic torque (Nm)


Turbine total inertia (kg m2)


Turbine total external damping (Nm/rad sec)

d, q

Synchronous reference frame index

s, (r)

Stator (rotor) index

V (I)

Voltage (Current)

P (Q)

Active (Reactive) power




Electromagnetic torque



L (M)

Inductance (Mutual inductance)


Leakage coefficient

ωr (ωs)

Angular speed (Synchronous speed)




Pole pair number


  1. 1.
    Liserre M, Cardenas R, Molinas M, Rodriguez J (2011) Overview of multi-MW wind turbines and wind parks. IEEE Trans Ind Electron 58(4):1081–1095CrossRefGoogle Scholar
  2. 2.
    Bianchi, FD, de Battista H, Mantz RJ (2007) Wind turbine control systems: principles, modelling and gain scheduling design. Springer, LondonGoogle Scholar
  3. 3.
    Beltran, B, Benbouzid MEH, Ahmed-Ali T (2009) High-order sliding mode control of a DFIG-based wind turbine for power maximization and grid fault tolerance. In: Proceedings of the IEEE IEMDC’09, Miami, USA, pp 183–189, May 2009Google Scholar
  4. 4.
    Beltran B, Benbouzid MEH, Ahmed-Ali T, Mangel H (2011) DFIG-based wind turbine robust control using high-order sliding modes and a high gain observer. Int Rev Model Simul 4(3):1148–1155Google Scholar
  5. 5.
    Benbouzid MEH, Beltran B, Mangel H, Mamoune A (2012) A high-order sliding mode observer for sensorless control of DFIG-based wind turbines. In: Proceedings of the 2012 IEEE IECON, Montreal, Canada, pp 4288–4292, October 2012Google Scholar
  6. 6.
    Benbouzid MEH, Beltran B, Amirat Y, Yao G, Han J, Mangel H (2013) High-order sliding mode control for DFIG-based wind turbine fault ride-through. In: Proceedings of the 2013 IEEE IECON, Vienna, Austria, pp 7670–7674, Nov 2013Google Scholar
  7. 7.
    Beltran B, Ahmed-Ali T, Benbouzid MEH (2008) Sliding mode power control of variable speed wind energy conversion systems. IEEE Trans Energy Convers 23(22):551–558CrossRefGoogle Scholar
  8. 8.
    Tazil M, Kumar V, Bansal RC, Kong S, Dong ZY, Freitas W, Mathur HD (2010) Three-phase doubly fed induction generators: an overview. IET Power Appl 4(2):75–89CrossRefGoogle Scholar
  9. 9.
    Senjyu T, Sakamoto R, Urasaki N, Funabashi T, Fujita H, Sekine H (2006) Output power leveling of wind turbine generator for all operating regions by pitch angle control. IEEE Trans Energy Convers 21(2):467–475CrossRefGoogle Scholar
  10. 10.
    Pena R, Cardenas R, Proboste J, Asher G, Clare J (2008) Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer. IEEE Trans Ind Electron 55(1):330–339CrossRefGoogle Scholar
  11. 11.
    Xu L, Cartwright P (2006) Direct active and reactive power control of DFIG for wind energy generation. IEEE Trans Energy Convers 21(3):750–758CrossRefGoogle Scholar
  12. 12.
    Cardenas R, Pena R, Proboste J, Asher G, Clare J (2005) MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans Energy Convers 20(4):710–718CrossRefGoogle Scholar
  13. 13.
    Vepa R (2011) Nonlinear, optimal control of a wind turbine generator. IEEE Trans Energy Convers 26(2):468–478CrossRefGoogle Scholar
  14. 14.
    Munteanu I, Bacha S, Bratcu AI, Guiraud J, Roye D (2008) Energy-reliability optimization of wind energy conversion systems by sliding mode control. IEEE Trans Energy Convers 23(3):975–985CrossRefGoogle Scholar
  15. 15.
    Valenciaga F, Puleston PF (2008) Variable structure control of a wind energy conversion system based on a brushless doubly fed reluctance generator. IEEE Trans Energy Convers 22(2):499–506CrossRefGoogle Scholar
  16. 16.
    Beltran B, Ahmed-Ali T, Benbouzid MEH (2009) High-order sliding mode control of variable speed wind turbines. IEEE Trans Ind Electron 56(9):3314–3321CrossRefGoogle Scholar
  17. 17.
    Beltran B, Benbouzid MEH, Ahmed-Ali T (2012) Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Trans Energy Convers 27(2):261–269CrossRefGoogle Scholar
  18. 18.
    Farza M, M’Saad M, Rossignol L (2004) Observer design for a class of MIMO nonlinear systems. Automatica 40(1):135–143CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Levant A, Alelishvili L (2007) Integral high-order sliding modes. IEEE Trans Autom Control 52(7):1278–1282CrossRefMathSciNetGoogle Scholar
  20. 20.
  21. 21.
    Manjock A (2005) Design codes FAST and ADAMS® for load calculations of onshore wind turbines. Report No.72042, Germanischer Lloyd WindEnergie GmbH, Hamburg, Germany, May 26, 2005Google Scholar
  22. 22.
    Cardenas R, Pena R, Alepuz S, Asher G (2013) Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans Ind Electron 60(7):2776–2798CrossRefGoogle Scholar
  23. 23.
    Benbouzid MEH, Beltran B, Ezzat M, Breton S (2013) DFIG driven wind turbine grid fault-tolerance using high-order sliding mode control. Int Rev Model Simul 6(1):29–32Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.EA 4325 LBMSUniversity of BrestBrest Cedex 03France

Personalised recommendations