Advertisement

Hardware in the Loop Wind Turbine Simulator for Control System Testing

  • Yolanda VidalEmail author
  • Leonardo Acho
  • Ningsu Luo
  • Christian Tutiven
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

This chapter illustrates how to set up an inexpensive but effective Hardware-in-the-Loop (HIL) platform for the test of wind turbine (WT) controllers. The dynamics of the WT are simulated on the open-source National Renewable Energy Laboratory WT simulator called FAST (Fatigue, Aerodynamics, Structures, and Turbulence), which emulates all required input signals of the controller and reacts to the controller commands (almost) like an onshore real turbine of 5 MW. The dynamic torque control system runs on an open hardware Arduino microcontroller board, which is connected to the virtual WT via USB. In particular, the power generation control in the full load region for variable-speed variable-pitch wind turbines is considered through torque and pitch control. The HIL proposed platform is used to characterize the behavior of the WT in normal operation as well as in fault operation. In particular, a stuck/unstuck fault is modeled and the behavior of a proposed chattering torque controller is analyzed in comparison to a baseline torque controller.

Keywords

Hardware-in-the-loop FAST Arduino Control Fault 

Nomenclature

βk

Pitch control, \(k = 1,2,3\)

τc

Generator torque control

ωg

Generator speed

\(\hat{\omega }_{g}\)

Filtered generator speed

\(\omega_{\text{ng}}\)

Rated generator speed

Pe

Electrical power

Pref

Reference power

θ

Scheduling parameter

\(\dot{x}\)

Denotes dx/dt

Notes

Acknowledgments

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness through the research projects DPI2012-32375/FEDER and DPI2011-28033-C03-01, and by the Catalonia Government through the research project 2014 SGR 859.

References

  1. 1.
    Arduino (2014) url: http://arduino.cc
  2. 2.
    Beltran B, Ahmed-Ali T, El Hachemi Benbouzid M (2008) Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans Energy Convers 23(2):551–558. Doi:  10.1109/TEC.2007.914163
  3. 3.
    Beltran B, Ahmed-Ali T, Benbouzid M (2009) High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 56(9):3314–3321. doi: 10.1109/TIE.2008.2006949 CrossRefGoogle Scholar
  4. 4.
    Bhat S, Bernstein D (1997) Finite-time stability of homogeneous systems. In: American control conference, 1997. Proceedings of the 1997, vol 4, pp 2513–2514. Doi:  10.1109/ACC.1997.609245
  5. 5.
    Boukhezzar B, Lupu L, Siguerdidjane H, Hand M (2007) Multivariable control strategy for variable speed, variable pitch wind turbines. Renewable Energy 32(8):1273–1287. doi:  10.1016/j.renene.2006.06.010, url: http://www.sciencedirect.com/science/article/pii/S0960148106001261
  6. 6.
    De Paoli S, Storni C (2011) Produsage in hybrid networks: sociotechnical skills in the case of Arduino. New Rev Hypermedia Multimedia 17(1):31–52CrossRefGoogle Scholar
  7. 7.
    Hanselmann H (1996) Hardware-in-the-loop simulation testing and its integration into a cacsd toolset. In: Computer-aided control system design, 1996., proceedings of the 1996 IEEE international symposium on, IEEE, pp 152–156Google Scholar
  8. 8.
    Jonkman J (2013) NWTC computer-aided engineering tools (FAST). url: http://wind.nrel.gov/designcodes/simulators/fast/
  9. 9.
    Jonkman JM, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical report, National Renewable Energy Laboratory, Golden, Colorado, nREL/TP-500-38060Google Scholar
  10. 10.
    Kelley N, Jonkman B (2013) NWTC computer-aided engineering tools (Turbsim). url: http://wind.nrel.gov/designcodes/preprocessors/turbsim/
  11. 11.
    Khezami N, Braiek NB, Guillaud X (2010) Wind turbine power tracking using an improved multimodel quadratic approach. ISA Trans 49(3):326–334. Doi:  10.1016/j.isatra.2010.03.008, url: http://www.sciencedirect.com/science/article/pii/S0019057810000273
  12. 12.
    Maclay D (1997) Simulation gets into the loop. IEEE Rev 43(3):109–112CrossRefGoogle Scholar
  13. 13.
    Manjock A (2005) Evaluation Report: Design codes FAST and ADAMS for load calculations of onshore wind turbines, Germanischer Lloyd WindEnergie, Report no. 72042Google Scholar
  14. 14.
    Terwiesch P, Keller T, Scheiben E (1999) Rail vehicle control system integration testing using digital hardware-in-the-loop simulation. IEEE Trans Control Syst Technol 7(3):352–362CrossRefGoogle Scholar
  15. 15.
    Vidal Y, Acho L, Luo N, Zapateiro M, Pozo F (2012) Power control design for variable-speed wind turbines. Energies 5(8):3033–3050. doi: 10.3390/en5083033 CrossRefGoogle Scholar
  16. 16.
    Vincent TL, Grantham WJ (1999) Nonlinear and optimal control systems. John Wiley & Sons, Inc., New YorkGoogle Scholar
  17. 17.
    Zhang Q, Reid J, Wu D et al (2000) Hardware-in-the-loop simulator of an off-road vehicle electrohydraulic steering system. Trans ASAE 43(6):1323–1330CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yolanda Vidal
    • 1
    Email author
  • Leonardo Acho
    • 1
  • Ningsu Luo
    • 2
  • Christian Tutiven
    • 1
  1. 1.Departament de Matemàtica Aplicada IIIUniversitat Politècnica de Catalunya-BarcelonaTECHBarcelonaSpain
  2. 2.Department of Electrical Engineering, Electronics and Automatic ControlUniversity of GironaGironaSpain

Personalised recommendations