Vibration Mitigation of Wind Turbine Towers with Tuned Mass Dampers

  • Okyay AltayEmail author
  • Francesca Taddei
  • Christoph Butenweg
  • Sven Klinkel
Part of the Advances in Industrial Control book series (AIC)


Because of its minor environmental impact, electricity generation using wind power is getting remarkable. The further growth of the wind industry depends on technological solutions to the challenges in production and construction of the turbines. Wind turbine tower vibrations, which limit power generation efficiency and cause fatigue problems with high maintenance costs, count as one of the main structural difficulties in the wind energy sector. To mitigate tower vibrations auxiliary measures are necessary. The effectiveness of tuned mass damper is verified by means of a numeric study on a 5 MW onshore reference wind turbine. Hereby, also seismic-induced vibrations and soil–structure interaction are considered. Acquired results show that tuned mass damper can effectively reduce resonant tower vibrations and improve the fatigue life of wind turbines. This chapter is also concerned with tuned liquid column damper and a semiactive application of it. Due to its geometric versatility and low prime costs, tuned liquid column dampers are a good alternative to other damping measures, in particular for slender structures like wind turbines.


Structural control Tuned mass damper Tuned liquid column damper Semiactive Soil–structure interaction 


In appearance order:

\(\delta_{s} ,\,\delta_{A}\)

Logarithmic damping decrement-Structural and aerodynamic


Damping ratio


Stiffness, damping coefficient, and mass of the foundation-soil system


Dynamic stiffness of foundation-soil system


Excitation frequency


Displacement and harmonic loading of foundation


Shear modulus, density, and Poisson’s ratio of soil


Equivalent radius of foundation

\(\theta_{\varphi } ,\,\theta_{\varphi z}\)

Rocking and torsional mass moments of inertia of foundation


Stiffness coefficients of foundation-soil system


Damping coefficients of foundation-soil system


Natural frequency of tuned mass damper/tuned liquid column damper

\(\mu^{ * }\)

Mass ratio between tuned mass damper and modal mass of structure


Natural frequency of structure


Optimal frequency and damping ratio of tuned mass damper/tuned liquid column damper


Displacement, velocity, and acceleration of liquid column motion of tuned liquid column mass damper


Pressure loss


Fundamental circular frequency of tuned mass damper/tuned liquid column damper

\(\gamma_{1} ,\,\gamma_{2}\)

1. and 2. geometric factor of tuned liquid column damper

\(\ddot{\it{x}} + \ddot{\it{x}}_{g} ,\,x + x_{g}\)

Acceleration and displacement of structure caused by base excitation


1. and 2. effective length of liquid column


Angle of the liquid column

V, H

Vertical and horizontal length of the liquid column


Area of the vertical and horizontal liquid column

\(D_{H} ,\,\omega_{H}\)

Damping ratio and fundamental circular frequency of structure


Mass ratio between tuned liquid column damper and modal mass of structure


Dynamic excitation force


Stiffness and damping coefficient of seismic actuator


Total mass of turbine and foundation


Frequency of seismic actuator


Seismic excitation force

\(x_{g,0} ,\,\dot{x}_{g,0}\)

Realized seismic foundation motions

\(x_{g,seis} ,\,\dot{x}_{g,seis}\)

Desired seismic foundation motions



This research work is funded by the Excellence Initiative of the German federal and state governments.


  1. 1.
    Adhikari S, Bhatacharya S (2011) Vibrations of wind turbines considering soil-structure interaction. Wind Struct 14(2):85–112CrossRefGoogle Scholar
  2. 2.
    Altay O (2013a) Flüssigkeitsdämpfer zur Reduktion periodischer und stochastischer Schwingungen turmartiger Bauwerke. Dissertation, RWTH Aachen UniversityGoogle Scholar
  3. 3.
    Altay O (2013b) Semiaktives Flüssigkeitssäulendämpfungssystem. German patent application AZ 10201300595.1, 26 June 2013Google Scholar
  4. 4.
    Altay O, Butenweg C, Klinkel S (2014a) Vibration mitigation of wind turbine towers by tuned liquid column dampers. In: Proceedings of the IX international conference on structural dynamics, Porto, PortugalGoogle Scholar
  5. 5.
    Anderson L (2011) Assessment of lumped-parameter models for rigid footings. Comput Struct 88(23):1567–1578Google Scholar
  6. 6.
    ASCE/AWEA (2011) Recommended practice for compliance of large land-based wind turbine support structures, Washington, DCGoogle Scholar
  7. 7.
    Bazeos N, Hatzigeorgiou GD, Hondros ID et al (2002) Static, seismic and stability analyses of a prototype wind turbine steel tower. Eng Struct 24:1015–1025CrossRefGoogle Scholar
  8. 8.
    Cao Q, Hao Z (2010) The research of the affecting factors on the seismic response of wind turbine tower. In: International conference on mechanic automation and control engineering. Nanjing, ChinaGoogle Scholar
  9. 9.
    Chen L (2013) Two parameters to improve the accuracy of the Green’s functions obtained via the thin layer method. In: Proceedings of the international conference on SeDIF. Aachen, GermanyGoogle Scholar
  10. 10.
    Danish Standard Committee (1992) Last og sikkerhed for vinmøller DS472. Dansk Ingeniørforening og Ingeniør-SammenslutningenGoogle Scholar
  11. 11.
    Den Hartog JP (1947) Mechanical vibrations. McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    DGGT (2002) Recommendations of the Building Ground Dynamics Work Group, Deutsche Gesellschaft für Geotechnik e.V. (DGGT), BerlinGoogle Scholar
  13. 13.
    DIBt (2012) Richtlinie für Windenergieanlagen- Einwirkungen und Standsicherheitsnachweise für Turm und Gründung, DIBt-B8Google Scholar
  14. 14.
    DNV/Risø (2002) Guidelines for design of wind turbines. 2nd edn. Det Norske Veritas and Risø National LaboratoryGoogle Scholar
  15. 15.
    Frahm H (1910) Means for damping the rolling motion of ships, US Patent 970,368, 13 Sept 1910Google Scholar
  16. 16.
    Fried L, Sawyer S, Shukla S et al (2013) Global wind report—Annual market update 2012. Global Wind Energy Council (GWEC). Brussels, BelgiumGoogle Scholar
  17. 17.
    GL (2005) Guideline for the certification of offshore wind turbines. Germanischer Lloyd Industrial Services GmbH Renewables CertificationGoogle Scholar
  18. 18.
    Hau E (2008) Windkraftanlagen. Springer, BerlinGoogle Scholar
  19. 19.
    IEC (2010) 61400-1-am1 Wind turbines-Part 1 Design requirements. 3rd edn. International Electrotechnical CommissionGoogle Scholar
  20. 20.
    Lin G, Han Z (2013) A 3D Dynamic impedance of arbitrary-shaped foundation on anisotropic multi-layered half-space. In: Proceedings of the International Conference SeDIF. Aachen, GermanyGoogle Scholar
  21. 21.
    Jonkman J, Butterfield, Musial W et al (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, ColoradoGoogle Scholar
  22. 22.
    Jonkman J (2013) NWTC computer aided engineering tool FAST. Accessed 28 Dec 2013
  23. 23.
    Lackner MA (2012) FAST-SC modified version of FAST. Accessed 28 Dec 2013
  24. 24.
    Mykoniou K, Taddei F, Han Z (2012) Dynamic foundation-soil interaction: A comparative study. Bauingenieur DACH Bullettin 87:9–13Google Scholar
  25. 25.
    Prowell I, Paul V (2009) Assessment of wind turbine seismic risk: existing literature and simple study of tower moment demand, Technical Report. Sandia National Laboratories, CaliforniaGoogle Scholar
  26. 26.
    Prowell I, Asareh MA (2011) Seismic loading for FAST, subcontract report NREL/SR-5000-53872. Missouri University of Science & Technology Rolla, MissouriGoogle Scholar
  27. 27.
    Prowell I, Asareh MA (2012) NWTC design code FAST-Seismic. Accessed 28 Dec 2013
  28. 28.
    Ritschel U, Warnke I, Kirchner J, Meussen B (2003) Wind turbines and earthquakes. In: 2nd world wind energy Conference, Cape TownGoogle Scholar
  29. 29.
    Sakai F, Takaeda S, Tamaki T (1991) Damping device for tower-like structure, US Patent 5,070,663, 10 Dec 1991Google Scholar
  30. 30.
    Taddei F, Meskouris K (2013) Seismic analysis of onshore wind turbine including soil-structure interaction effects. In: Proceedings of the International Conference on SeDIF. Aachen, GermanyGoogle Scholar
  31. 31.
    Taddei F, Klinkel S, Butenweg C (2014) Parametric investigation of the soil-structure interaction effects on the dynamic behavior of a wind turbine considering a layered soil. Wind Energy. doi: 10.1002/we.1703 Google Scholar
  32. 32.
    Warburton GB, Ayorinde EO (1980) Optimum absorber parameters for simple systems. Earthquake Engng Struct Dyn 8(3):197–217CrossRefGoogle Scholar
  33. 33.
    Zhao X, Maißer P (2006) Seismic response analysis of wind turbine towers including soil-structure interaction. J Multi-body Dynam 220(1):53–61Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Okyay Altay
    • 1
    Email author
  • Francesca Taddei
    • 1
  • Christoph Butenweg
    • 1
  • Sven Klinkel
    • 1
  1. 1.Faculty of Civil Engineering, Chair of Structural Analysis and DynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations