Skip to main content

Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Abstract

We present polynomial time constant factor approximations on NP-Complete special instances of the Guarding a Set of Segments(GSS) problem. The input to the GSS problem consists of a set of line segments, and the goal is to find a minimum size hitting set of the given set of line segments. We consider the underlying planar graph on the set of intersection points as vertices and the edge set as pairs of vertices which are adjacent on a line segment. Our results are for the subclass of instances of GSS for which the underlying planar graph has girth at least 4. On this class of instances, we show that an optimum solution to the natural hitting set LP can be rounded to yield a 3-factor approximation to the optimum hitting set. The GSS problem remains NP-Complete on the sub-class of such instances. The main technique, that we believe could be quite general, is to round the hitting set LP optimum for special hypergraphs that we identify.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: A non-linear lower bound for planar epsilon-nets. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 341–346 (2010)

    Google Scholar 

  2. Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MATH  Google Scholar 

  3. Balaban, I.J.: An optimal algorithm for finding segments intersections. In: Proceedings of the Eleventh Annual Symposium on Computational Geometry, SCG 1995, pp. 211–219. ACM, New York (1995)

    Google Scholar 

  4. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric intersections. IEEE Transactions on Computers C-28(9), 643–647 (1979)

    Google Scholar 

  5. Brimkov, V.E.: Approximability issues of guarding a set of segments. Int. J. Comput. Math. 90(8), 1653–1667 (2013)

    Article  MATH  Google Scholar 

  6. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments in the plane. Theoretical Computer Science 412(15), 1313–1324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brimkov, V.E., Leach, A., Wu, J., Mastroianni, M.: Approximation algorithms for a geometric set cover problem. Discrete Applied Mathematics 160, 1039–1052 (2011)

    Article  MathSciNet  Google Scholar 

  8. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite vc-dimension. Discrete and Computational Geometry 14(1), 463–479 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chazelle, B.: Reporting and counting segment intersections. Journal of Computer and System Sciences 32, 156–182 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Furstenberg, H., Katznelson, Y.: A density version of the hales-jewett theorem. Journal d’Analyse Mathématique 57(1), 64–119 (1991)

    MATH  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63. ACM, New York (1974)

    Chapter  Google Scholar 

  13. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In: Proceedings of the Second Annual Symposium on Computational Geometry, SCG 1986, pp. 61–71. ACM, New York (1986)

    Chapter  Google Scholar 

  14. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  15. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 624–635. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Long, P.M.: Using the pseudo-dimension to analyze approximation algorithms for integer programming. In: Proceedings of the 7th International Workshop on Algorithms and Data Structures, WADS 2001, pp. 26–37. Springer, London (2001)

    Google Scholar 

  17. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Operations Research Letters 1(5), 194–197 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete & Computational Geometry 44(4), 883–895 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pyrga, E., Ray, S.: New existence proofs for ε-nets. In: Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry, SCG 2008, pp. 199–207. ACM, New York (2008)

    Chapter  Google Scholar 

  20. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (September 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Joshi, A., Narayanaswamy, N.S. (2014). Approximation Algorithms for Hitting Triangle-Free Sets of Line Segments. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics