Advertisement

A Framework for Qualitative Representation and Reasoning about Spatiotemporal Patterns

  • Foued BarouniEmail author
  • Bernard Moulin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

A new generation of data acquisition systems has emerged in recent years through the development of communication technologies. These systems make use of geographically distributed devices that generate large amounts of data. Several models of spatiotemporal patterns have been proposed to help users take advantage of such data. However, most of current approaches rely on query languages ​​which are not easily manipulated by end-users. Because of their limited expressiveness, such approaches do not allow for reasoning about spatiotemporal phenomena that are so common in the real world. In this context, we propose a new definition of a spatiotemporal pattern. We use conceptual graphs to allow for a qualitative representation of patterns and we integrate contextual information in the definition of patterns to improve the reasoning ability of software agents. We propose an approach to help users manage spatiotemporal situations and illustrate it with a case study in the domain of power utilities.

Keywords

Geographic Information System Contextual Information Spatiotemporal Pattern Query Language Software Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Political Psychology: Special issue on Neuroscientific contributions to political psychology. Political Psychology 24(4) (2003)Google Scholar
  2. 2.
    Erwig, M.: Toward Spatiotemporal patterns. In: Spatiotemporal Databases, pp. 1–26. Springer (2003)Google Scholar
  3. 3.
    Etzion, O., Zolotorvesky, N.: Spatial Perspectives in Event Processing. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) Buchmann Festschrift. LNCS, vol. 6462, pp. 85–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Gehrke, J., Lattner, A., Herzog, O.: Qualitative Mapping of Sensory Data for Intelligent Vehicles. In: Visser, U., Lakemeyer, G., Vachtesevanos, G., Veloso, M. (eds.) Workshop on Agents in Real-Time and Dynamic Environments at the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, pp. 51–60 (2005)Google Scholar
  5. 5.
    Holzmann, C.: Rule based reasoning about qualitative spatiotemporal relations. In: Proceedings of the 5th International Workshop on Middleware for Pervasive and Ad-hoc Computing: Held at the ACM/IFIP/USENIX 8th International Middleware Conference (MPAC 2007), pp. 49–54. ACM, New York (2007)Google Scholar
  6. 6.
    Holzmann, C., Ferscha, A.: A framework for utilizing qualitative spatial relations between networked embedded systems. Journal Pervasive and Mobile Computing 6(3), 362–381 (2010)CrossRefGoogle Scholar
  7. 7.
    Kabbaj, A.: Development of intelligent systems and multi-agents systems with Amine platform. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 286–299. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Lattner, A.D., Miene, A., Visser, U., Herzog, O.: Sequential Pattern Mining for Situation and Behavior Prediction in simulated Robotic Soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 118–129. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley (2002)Google Scholar
  10. 10.
    Open Geospatial Consortium, http://www.opengeospatial.org
  11. 11.
    Gorawski, M., Jureczek, P.: A proposal of spatio-temporal pattern queries. In: Proceedings of the International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2010), pp. 587–593. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  12. 12.
    Cole, S., Hornsby, K.: Modeling Noteworthy events in a geospatial domain. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M. J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 77–89. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Moulin, B.: Temporal contexts for discourse representation: An extension of the conceptual graph approach. Applied Intelligence 7, 225–227 (1997)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (1995) ISBN 0-13-604259-7Google Scholar
  15. 15.
    Freksa, C., Klippel, A., Winter, S.: A cognitive perspective on spatial context. In: Cohn, A.G., Freksa, C., Nebel, B. (eds.) Spatial Cognition: Specialization and Integration, vol. 05491 (2007) ISSN 1862-4405Google Scholar
  16. 16.
    Lind, J.: Patterns in agent-oriented software engineering. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 47–58. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Grenon, P., Smith, B.: SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cognition and Computation 4(1), 69–103 (2004)CrossRefGoogle Scholar
  18. 18.
    Desclés, J.-P.: Représentation des connaissances: Archétypes cognitifs, schèmes conceptuels et schémas grammaticaux. In: Actes Sémiotiques - Documents VII, 69/70. EHESS, Paris (1985)Google Scholar
  19. 19.
    Haddad, H., Moulin, B.: A Framework to Support Qualitative Reasoning about COAs in a Dynamic Spatial Environment. Journal of Experimental & Theoretical Artificial Intelligence, 1–40 (First published on: July 27, 2010 (iFirst)), vol. 22(4), 341–380, Taylor & Francis (2010)Google Scholar
  20. 20.
  21. 21.
    Adi, A., Biger, A., Botzer, D., Etzion, O., Sommer, Z.: Context Awareness in Amit. Active Middleware Services 2003, 160–167 (2003)Google Scholar
  22. 22.
    Sharon, G., Etzion, O.: Event Processing Networks – model and implementation. IBM System Journal 47(2), 321–334 (2008)CrossRefGoogle Scholar
  23. 23.
    Galton, A.: Fields and Objects in Space, Time, and Space-time. Spatial Cognition and Computation 4, 39–68 (2004)CrossRefGoogle Scholar
  24. 24.
    Cohn, A., Renz, J.: Qualitative Spatial Reasoning. In: Van Harmelen, F., Lifschitz, F.V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier (2007)Google Scholar
  25. 25.
    Toussaint, G.T.: The use of context in pattern recognition. Pattern Recognition 10, 189–204 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Bazire, M., Brézillon, P.: Understanding Context Before Using It. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 29–40. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical report. Dartmouth College Hanover, NH, USA (2000)Google Scholar
  28. 28.
    Brézillon, P.: Context in Artificial Intelligence: II, Key elements of context. Computing and Informatics 18(5) (1999)Google Scholar
  29. 29.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Massachusetts (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and Software EngineeringLaval UniversityQuebec City (Quebec)Canada

Personalised recommendations