Advertisement

A Partial-Closure Canonicity Test to Increase the Efficiency of CbO-Type Algorithms

  • Simon AndrewsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

Computing formal concepts is a fundamental part of Formal Concept Analysis and the design of increasingly efficient algorithms to carry out this task is a continuing strand of FCA research. Most approaches suffer from the repeated computation of the same formal concepts and, initially, algorithms concentrated on efficient searches through already computed results to detect these repeats, until the so-called canonicity test was introduced. The canonicity test meant that it was sufficient to examine the attributes of a computed concept to determine its newness: searching through previously computed concepts was no longer necessary. The employment of this test in Close-by-One type algorithms has proved to be highly effective. The typical CbO approach is to compute a concept and then test its canonicity. This paper describes a more efficient approach, whereby a concept need only be partially computed in order to carry out the test. Only if it passes the test does the computation of the concept need to be completed. This paper presents this ‘partial-closure’ canonicity test in the In-Close algorithm and compares it to a traditional CbO algorithm to demonstrate the increase in efficiency.

Keywords

Formal Concept Analysis FCA FCA algorithms Computing formal concepts Canonicity test Partial-closure canonicity test Close-by-One In-Close CbO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, S., Orphanides, C.: Analysis of large data sets using formal concept lattices. In: [31], pp. 104–115Google Scholar
  2. 2.
    Tanabata, T., Sawase, K., Nobuhara, H., Bede, B.: Interactive data mining for image databases based on fca. Journal of Advanced Computational Intelligence and Intelligent Informatics 14, 303–308 (2010)Google Scholar
  3. 3.
    Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A.: Two FCA-based methods for mining gene expression data. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 251–266. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Kuznetsov, S.O.: On computing the size of a lattice and related decision problems. Order 18, 313–321 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. J. Wiley (2004)Google Scholar
  6. 6.
    Kuznetsov, S.O.: Mathematical aspects of concept analysis. Mathematical Science 80, 1654–1698 (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1998)Google Scholar
  8. 8.
    Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures: Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)Google Scholar
  9. 9.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on Galois lattices. Computational Intelligence 11, 246–267 (1995)CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence 14, 189–216 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In: Belohavlek, R., Kuznetsov, S. (eds.) Proceedings of Concept Lattices and their Applications (2008)Google Scholar
  13. 13.
    Andrews, S.: In-close, a fast algorithm for computing formal concepts. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. CEUR WS, vol. 483 (2009), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-483/
  14. 14.
    Andrews, S.: In-close2, a high performance formal concept miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 50–62. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Krajca, P., Vychodil, V., Outrata, J.: Advances in algorithms based on CbO. In: [31], pp. 325–337Google Scholar
  16. 16.
    Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf. Sci. 185, 114–127 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Strok, F., Neznanov, A.: Comparing and analyzing the computational complexity of fca algorithms. In: Proceedings of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 417–420 (2010)Google Scholar
  18. 18.
    Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S.: Formal concept discovery in semantic web data. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 164–179. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Borchman, D.: A generalized next-closure algorithm - enumerating semilattice elements from a generating set. In: Szathmary, L., Priss, U. (eds.) Proceedings of Concept Lattices and thie Applications (CLA 2012), pp. 9–20. Universidad de Malaga (2012)Google Scholar
  20. 20.
    Chein, M.: Algorithme de recherche des sous-matrices premires dune matrice. Bull. Math. Soc. Sci. Math. R.S. Roumanie 13, 21–25 (1969)MathSciNetGoogle Scholar
  21. 21.
    Norris, E.M.: Maximal rectangular relations. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 476–481. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  22. 22.
    Ganter, B.: Two basic algorithms in concept analysis. FB4-Preprint 831. TH Darmstadt (1984)Google Scholar
  23. 23.
    Bordat, J.P.: Calcul pratique du treillis de Galois dune correspondance. Math. Sci. Hum. 96, 31–47 (1986)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information Procesing Letters 71, 199–204 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    van der Merwe, D., Obiedkov, S., Kourie, D.: Addintent: A new incremental algorithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Andrews, S.: Appendix to a partial-closure canonicity test to increase the efficiency of CbO-type algorithms (2013), https://dl.dropboxusercontent.com/u/3318140/partialclosureappendix.pdf
  27. 27.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
  28. 28.
    Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 77–86. ACM (2005)Google Scholar
  29. 29.
    Andrews, S.: In-Close program (2013), http://sourceforge.net/projects/inclose/
  30. 30.
    Krajca, P., Outrata, J., Vychodil, V.: FCbO program (2012), http://fcalgs.sourceforge.net/
  31. 31.
    Kryszkiewicz, M., Obiedkov, S. (eds.): Proceeding of 7th International Conference on Concept Lattices and Their Applications, CLA 2010. University of Sevilla, Seville (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Conceptual Structures Research Group Communication and Computing Research Centre Faculty of Arts, Computing, Engineering and SciencesSheffield Hallam UniversitySheffieldUK

Personalised recommendations