Advertisement

Swip: A Natural Language to SPARQL Interface Implemented with SPARQL

  • Camille PradelEmail author
  • Ollivier Haemmerlé
  • Nathalie Hernandez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

The Swip approach aims at translating into SPARQL queries expressed in natural language exploiting query patterns. In this article, we present the main module of the prototype implementing this approach which entirely relies on SPARQL. All steps of the interpretation process which are carried out in this module are indeed completely performed on RDF triple stores through SPARQL updates. Thus, the implementation gets benefit from SPARQL engine capabilities, which prevent us from worrying about graph manipulation and matching.

Keywords

Pattern Element SPARQL Query Query Pattern Interpretation Process Target Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez, V., Uren, V., Sabou, M., Motta, E.: Is question answering fit for the semantic web?: a survey. Semantic Web 2(2), 125–155 (2011)Google Scholar
  2. 2.
    Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query languages and interfaces to semantic web knowledge bases. Web Semantics: Science. Services and Agents on the World Wide Web 8(4), 377–393 (2010)CrossRefGoogle Scholar
  3. 3.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching rdf graphs with sparql and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)Google Scholar
  4. 4.
    Russell, A., Smart, P.R.: Nitelight: A graphical editor for sparql queries. In: International Semantic Web Conference (Posters & Demos) (2008)Google Scholar
  5. 5.
    Clemmer, A., Davies, S.: Smeagol: A “Specific-to-general” semantic web query interface paradigm for novices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 288–302. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the semantic web. International Journal of Metadata, Semantics and Ontologies 7(1), 37–54 (2012)CrossRefGoogle Scholar
  7. 7.
    Ferré, S.: SQUALL: A controlled natural language for querying and updating RDF graphs. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 11–25. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Lei, Y., Uren, V.S., Motta, E.: SemSearch: A search engine for the semantic web. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting keyword query to semantic search. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp. 405–416 (2009)Google Scholar
  11. 11.
    Cabrio, E., Cojan, J., Aprosio, A., Magnini, B., Lavelli, A., Gandon, F.: Qakis: an open domain qa system based on relational patterns. In: International Semantic Web Conference (Posters & Demos) (2012)Google Scholar
  12. 12.
    Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: A lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Lehmann, J., Bühmann, L.: Autosparql: Let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A., Gerber, D., Cimiano, P.: Template-based question answering over rdf data. In: Proceedings of the 21st International Conference on World Wide Web, pp. 639–648. ACM (2012)Google Scholar
  15. 15.
    Pradel, C., Haemmerlé, O., Hernandez, N.: Natural language query interpretation into SPARQL using patterns. In: COLD@ISWC 2013, Sydney, Australia (October 2013)Google Scholar
  16. 16.
    Pradel, C., Haemmerlé, O., Hernandez, N.: A semantic web interface using patterns: The SWIP system. In: Croitoru, M., Rudolph, S., Wilson, N., Howse, J., Corby, O. (eds.) GKR 2011. LNCS (LNAI), vol. 7205, pp. 172–187. Springer, Heidelberg (2012), http://www.springerlink.com CrossRefGoogle Scholar
  17. 17.
    Pradel, C., Peyet, G., Haemmerlé, O., Hernandez, N.: Swip at qald-3: results, criticisms and lesson learned (working notes). In: CLEF 2013, Valencia, Spain, September 23-26 (2013)Google Scholar
  18. 18.
    Rector, A.: Modularisation of domain ontologies implemented in description logics and related formalisms including owl. In: Proceedings of the 2nd International Conference on Knowledge Capture, pp. 121–128. ACM (2003)Google Scholar
  19. 19.
    Raimond, Y., Abdallah, S., Sandler, M., Giasson, F.: The music ontology (2007)Google Scholar
  20. 20.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating nlp using linked dataGoogle Scholar
  21. 21.
    Champin, P.A.: RDF-REST: a unifying framework for web APIs and linked data (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Camille Pradel
    • 1
    Email author
  • Ollivier Haemmerlé
    • 1
  • Nathalie Hernandez
    • 1
  1. 1.IRITUniversity of ToulouseToulouseFrance

Personalised recommendations