Advertisement

Extracting Threshold Conceptual Structures from Web Documents

  • Gabriel CiobanuEmail author
  • Ross Horne
  • Cristian Văideanu
Conference paper
  • 841 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

In this paper we describe an iterative approach based on formal concept analysis to refine the information retrieval process. Based on weights for ranking documents we define a weighted formal context. We use a Galois connection to introduce a new type of formal concept that allows us to work with specific thresholds for searching words in Web documents. By increasing the threshold, we obtain smaller lattices with more relevant concepts, thus improving the retrieval of more specific items. We use techniques for processing large data sets in parallel, to generate sequences of Galois lattices, overcoming the time complexity of building a lattice for an entire large context.

Keywords

Information Retrieval Derivation Operator Concept Lattice Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpineto, C., Romano, G.: Order-Theoretical Ranking. Journal of the American Society for Information Science 51, 587–601 (2000)CrossRefGoogle Scholar
  2. 2.
    Carpineto, C., Romano, G.: Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO. J. Univ. Comput. Sci. 10, 985–1013 (2004)zbMATHGoogle Scholar
  3. 3.
    Cigarrán, J.M., Gonzalo, J., Peñas, A., Verdejo, F.: Browsing Search Results via Formal Concept Analysis: Automatic Selection of Attributes. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 74–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Codocedo, V., Lykourentzou, I., Napoli, A.: A Contribution to Semantic Indexing and Retrieval Based on FCA; An Application to Song Datasets. In: Proceedings CLA. CEUR Workshop, vol. 972, pp. 257–268 (2012)Google Scholar
  5. 5.
    Dau, F., Ducrou, J., Eklund, P.: Concept Similarity and Related Categories in SearchSleuth. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 255–268. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    El Qadi, A., Aboutajdin, D., Ennouary, Y.: Formal Concept Analysis for Information Retrieval. Int’l Journal of Computer Science and Information Security 7, 119–125 (2010)Google Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer (1999)Google Scholar
  8. 8.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on Galois Lattices. Computational Intelligence 11, 246–267 (1995)CrossRefGoogle Scholar
  9. 9.
    Karp, D., Schabes, Y., Zaidel, M., Egedi, D.: A Freely Available Wide Coverage Morphological Analyzer for English. In: Proceedings 14th COLING, pp. 950–955 (1992)Google Scholar
  10. 10.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press (2009)Google Scholar
  11. 11.
    Messai, N., Devignes, M.-D., Napoli, A., Smaïl-Tabbone, M.: Querying a Bioinformatic Data Sources Registry with Concept Lattices. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 323–336. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Algorithm for Constructing Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Nauer, E., Toussaint, Y.: Dynamical Modification of Context for an Iterative and Interactive Information Retrieval Process on the Web. In: Proceedings CLA. CEUR Workshop, vol. 331, 12 p. (2007)Google Scholar
  14. 14.
    Priss, U.: Lattice-Based Information Retrieval. Knowledge Organization 27, 132–142 (2000)Google Scholar
  15. 15.
    Spyratos, N., Meghini, C.: Preference-Based Query Tuning Through Refinement/Enlargement in a Formal Context. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 278–293. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gabriel Ciobanu
    • 1
    Email author
  • Ross Horne
    • 1
  • Cristian Văideanu
    • 2
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.Faculty of MathematicsA.I.Cuza University of IaşiIaşiRomania

Personalised recommendations