Conceptual Graphs Are Also Graphs

  • Michel CheinEmail author
  • Marie-Laure Mugnier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)


The main objective of this paper is to add one more brick in building the CG model as a knowledge representation model autonomous from logic. The CG model is not only a graphical representation of logic, it is much more: it is a declarative model encoding knowledge in a mathematical theory, namely labelled graph theory, which has efficient computable forms, with a fundamental graph operation on the encodings to do reasoning, projection, which is a labelled graph morphism. Main topics of this paper are: a generalized formalism for simple CGs; a strong equivalence between CSP (Constraint Satisfaction Problem) and labelled graph morphism. This correspondence allows the transportation of efficient algorithms from one domain to the other, and confirms that projection —or more generally labelled graph morphism— firmly moors CGs to combinatorial algorithmics, which is a cornerstone of computer science. The usual sound and complete first order logic semantics for CGs is still valid for our generalized model. This, plus the ease of doing important reasonings with CGs —for instance plausible reasonings by using some maximal join operations— without, at least for the moment, logical semantics, strengthens our belief that CGs must also be studied and developed independently from logic.


Normal Form Constraint Satisfaction Problem Constraint Network Constraint Graph Conceptual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACP87]
    Arnborg, S., Corneil, D.G., Proskurovski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal Algebraic Discrete Methods (8), 277–284 (1987)Google Scholar
  2. [Ber70]
    Berge, C.: Graphes et hypergraphes. Dunond (1970)Google Scholar
  3. [CM92]
    Chein, M., Mugnier, M.L.: Conceptual Graphs: fundamental notions. Revue d’Intelligence Artificielle 6(4) (1992) (in English)Google Scholar
  4. [Ell93]
    Ellis, G.: Efficient Retrieval from Hierarchies of Objects using Lattice Operations. In: Mineau, G.W., Moulin, B., Sowa, J.F. (eds.) ICCS 1993. LNCS, vol. 699, pp. 274–293. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  5. [Fre82]
    Freuder, E.C.: A sufficient condition for backtrack-free search. JACM, 29–45 (1982)Google Scholar
  6. [FV93]
    Feder, T., Vardi, M.Y.: Monotone Monadic SNP and Constraint Satisfaction. In: Proceedings of the 25th ACM STOC, pp. 612–622 (1993)Google Scholar
  7. [Gai93]
    Gaines, B.R.: Representation, discourse, logic and truth: Situating knowledge technology. In: Mineau, G.W., Moulin, B., Sowa, J.F. (eds.) ICCS 1993. LNCS, vol. 699, pp. 36–63. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  8. [GWW92]
    Gutjahr, W., Welzl, E., Woeginger, G.: Polynomial graph coloring. Discrete Applied Math. (35), 29–45 (1992)Google Scholar
  9. [HN90]
    Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Th. (B), 33–42 (1990)Google Scholar
  10. [HNZ93]
    Hell, P., Nešetřil, J., Zhu, X.: Complexity of tree homomorphisms (1993) (manuscript)Google Scholar
  11. [HNZ94]
    Hell, P., Nešetřil, J., Zhu, X.: Duality and Polynomial Testing of Tree Homomorphisms (1994) (manuscript)Google Scholar
  12. [Jac88]
    Jackman, M.K.: Inference and the Conceptual Graph Knowledge Representation Language. In: Moralee, S. (ed.) Research and Development in Expert Systems IV. Cambridge University Press (1988)Google Scholar
  13. [Kac84]
    Ait Kaci, H.: A lattice-Theoretic Approach to Computation Based on A Calculus of Partially Ordered Type Structures. PhD Thesis, University of Pennsylvania (1984)Google Scholar
  14. [LB94]
    Liquiere, M., Brissac, O.: A class of conceptual graphs with polynomial isoprojection. In: Supplemental Proceedings of the International Conference on Conceptual Structures (1994) (revised version)Google Scholar
  15. [Leh92]
    Lehmann, F. (ed.): Semantics Networks in Artificial Intelligence. Pergamon Press (1992)Google Scholar
  16. [Lev94]
    Levinson, R.: UDS: A Universal Data Structure. In: Tepfenhart, W.M., Dick, J.P., Sowa, J.F. (eds.) ICCS 1994. LNCS (LNAI), vol. 835, pp. 230–250. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. [MC92]
    Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching. In: Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementation. LNCS, vol. 754, pp. 239–251. Springer, Heidelberg (1993)Google Scholar
  18. [MC93]
    Mugnier, M.L., Chein, M.: Characterization and Algorithmic Recognition of Canonical Conceptual Graphs. In: Mineau, G.W., Moulin, B., Sowa, J.F. (eds.) ICCS 1993. LNCS, vol. 699, pp. 294–311. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  19. [MC94]
    Mugnier, M.L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. To Appear in Revue d’Intelligence Artificielle, 52 pages (1994)Google Scholar
  20. [Mug95]
    Mugnier, M.L.: On generalization/specialization for conceptual graphs. J. Expt. Theor. Artif. Intell. 7(3), 325–344 (1995)CrossRefzbMATHGoogle Scholar
  21. [P.89]
    Meseguer, P.: Constraint satisfaction problems: an overview. AICOM 2(1), 3–17 (1989)Google Scholar
  22. [Sow84]
    Sowa, J.F.: Conceptual Structures - Information Processing in Mind and Machine. Addison-Wesley (1984)Google Scholar
  23. [Sow94a]
    Sowa, J.F.: Knowledge representation: Logical, philosophical, and computational foundations. Preliminary Edition (August 1994)Google Scholar
  24. [Sow94b]
    Sowa, J.F.: Logical Foundations for Representing Object-oriented Systems. Journal of Experimental and Theoretical Artificial Intelligence 5 (1994)Google Scholar
  25. [SW86]
    Sowa, J.F., Way, E.C.: Implementing a semantic interpreter using conceptual graphs. IBM Journal of Research and Development 30(1), 57–69 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of Montpellier 2Montpellier Cedex 5France

Personalised recommendations