Skip to main content

From ‘Trapped Rainbow’ Slow Light to Spatial Solitons

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 200))

Abstract

The metamaterial global revolution, stimulated by the pioneering work of Pendry [1], in the year 2000, raises all kinds of questions as to what they can be used for.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.D. Boardman, J. Opt. 13, 020401 (2011)

    Article  ADS  Google Scholar 

  2. B.E.A. Saleh, M.C. Tech, Fundamentals of Photonics (John Wiley, New Jersey, 2007)

    Google Scholar 

  3. P. Markoš, C.M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008)

    Google Scholar 

  4. V.M. Shalaev, A.K. Sarychev, Electrodynamics of Metamaterials (World Scientific Publishing, New Jersey, 2007)

    MATH  Google Scholar 

  5. N. Engheta, R.W. Ziolkowski (eds.), Electromagnetic Metamaterials: Physics and Engineering Explorations (Wiley-IEEE Press, New York, 2006)

    Google Scholar 

  6. J.B. Khurgin, R.S. Tucker (eds.), Slow Light: Science and Applications (Taylor & Francis, New York, 2009)

    Google Scholar 

  7. P.W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, New York, 2005)

    Google Scholar 

  8. K.L. Tsakmakidis, A.D. Boardman, O. Hess, ‘Trapped rainbow’ storage of light in metamaterials. Nature 450, 397 (2007)

    Article  ADS  Google Scholar 

  9. B. Corcoran et al., Green light emission in silicon through slow-light enhanced third- harmonic generation in photonic crystal waveguides. Nat. Photonics 3, 206 (2009)

    Article  ADS  Google Scholar 

  10. F. Xia et al., Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65 (2006)

    Article  ADS  Google Scholar 

  11. A. Petrov et al., Backscattering and disorder limits in slow light photonic crystal waveguides. Opt. Express 17, 8676 (2009)

    Article  ADS  Google Scholar 

  12. D.P. Fussell et al., Influence of fabrication disorder on the optical properties of coupled- cavity photonic crystal waveguides. Phys. Rev. B 78, 144201 (2008)

    Article  ADS  Google Scholar 

  13. C. Helgert et al., Effective properties of amorphous metamaterials. Phys. Rev. B 79, 233107 (2009)

    Article  ADS  Google Scholar 

  14. N. Papasimakis et al., Coherent and incoherent metamaterials and order-disorder transitions. Phys. Rev. B 80, 041102(R) (2010)

    Article  ADS  Google Scholar 

  15. Q. Gan et al., Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc. Nat. Acad. Sci. 108(13), 5169–5173 (2011)

    Article  ADS  Google Scholar 

  16. V.N. Smolyaninova et al., Experimental observation of the trapped rainbow. Appl. Phys. Lett. 96, 211121 (2009)

    Article  ADS  Google Scholar 

  17. E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  18. A.D. Boardman, A.P. Sukhorukov, Soliton-Driven Photonics (Kluwer Academic Publishers, Dordecht, 2000)

    Google Scholar 

  19. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 2001)

    Google Scholar 

  20. S. Trillo, W. Torrellas, Spatial Solitons (Springer, Berlin, 2001)

    Book  Google Scholar 

  21. M. Remoissenet, Waves Called Solitons (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  22. K.C. Huang et al., Nature of lossy Bloch states in polaritonic photonic crystals. Phys. Rev. B 69, 195111 (2004)

    Article  ADS  Google Scholar 

  23. J.-S. Li, Optical modulator based on negative refractive material. Opt. Laser Technol. 41, 627 (2009)

    Article  ADS  Google Scholar 

  24. A.J. Hoffman et al., Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  ADS  Google Scholar 

  25. A.J. Hoffman et al., Midinfrared semiconductor optical metamaterials. J. Appl. Phys. 105, 122411 (2009)

    Article  ADS  Google Scholar 

  26. Z.V. Vardeny, A. Nahata, Anderson localisation of slow light. Nat. Photonics 2, 75 (2008)

    Article  ADS  Google Scholar 

  27. S. Mookherjea et al., Localisation in silicon nanophotonic slow-light waveguides. Nat. Photonics 2, 90 (2008)

    Article  ADS  Google Scholar 

  28. O. Hess, K.L. Tsakmakidis, Stopping light in metamaterials: The trapped rainbow. SPIE Newsroom (Nanotechnology) (2008). doi:10.1117/2.120086.1163

    Google Scholar 

  29. K.L. Tsakmakidis et al., Single-mode operation in the slow light regime using oscillatory waves in generalised left-handed heterostructures. Appl. Phys. Lett. 89, 201103 (2006)

    Article  ADS  Google Scholar 

  30. A. Karalis et al., Plasmonic dielectric systems for high-order dispersionless slow or stopped subwavelength light. Phys. Rev. Lett. 103, 043906 (2009)

    Article  ADS  Google Scholar 

  31. J.W. Dong, H.Z. Wang, Slow electromagnetic propagation with low group velocity dispersion in all-metamaterial based waveguide. Appl. Phys. Lett. 91, 111909 (2007)

    Article  ADS  Google Scholar 

  32. M.A. Vincenti et al., Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies. J. Appl. Phys. 105, 103103 (2009)

    Article  ADS  Google Scholar 

  33. E.I. Kirby et al., FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. J. Opt. A: Pure Appl. Opt. 11, 114027 (2009)

    Article  ADS  Google Scholar 

  34. A. Archambault et al., Surface plasmon Fourier optics. Phys. Rev. B 79, 195414 (2009)

    Article  ADS  Google Scholar 

  35. E.I. Kirby, J.M. Hamm, T. Pickering, K.L. Tsakmakidis, O. Hess, Evanescent gain in “trapped rainbow” negative refractive index heterostructures. Phys. Rev. B 84, 041103 (2011)

    Article  ADS  Google Scholar 

  36. J.J. Cook et al., Ultralow-loss optical diamagnetism in silver nanoforests. J. Opt. A.: Pure Appl. Opt. 11, 114026 (2009)

    Article  ADS  Google Scholar 

  37. O. Hess et al., Active nanoplasmonic metamaterials. Nat. Mater. 11, 573 (2012)

    Article  ADS  Google Scholar 

  38. S. Wuestner et al., Plasmon lasers at deep subwavelength scale. Phys. Rev. B. 85, 201406(R) (2012)

    Google Scholar 

  39. J.S. Aitchison, A.M. Weiner, Y. Silberberg, D.E. Leaird, M.K. Oliver, J.L. Jackel, P.W. Smith, Opt. Letters 15, 471–473 (1990)

    Google Scholar 

  40. M. Ballav, A.R. Chowdhury, Prog. Electromagnetics Res. 63, 33–50 (2006)

    Article  Google Scholar 

  41. A.D. Boardman, K. Marinov, D.I. Pushkarov, A. Shivarova, Optical Quantum Electronics 32, 49–62 (2000)

    Article  Google Scholar 

  42. A.D. Boardman, K. Marinov, D.I. Pushkarov, A. Shivarova, Physical Rev. E 62, 2871–2876 (2000)

    Article  ADS  Google Scholar 

  43. P. Kockaert, P. Tassin, G. Van der Sande, I. Veretennicoff, M. Tlidi, Physical Rev. A 74, 033822 (2006)

    Article  ADS  Google Scholar 

  44. K.J. Webb, A. Ludwig, Physical Rev. B 78, 153303 (2008)

    Google Scholar 

  45. P. Kinsler, M.W. McCall, Physical Rev. Letters 101, 167401 (2008)

    Google Scholar 

  46. A.D. Boardman, R.C. Mitchell-Thomas, N.J. King, Y.G. Rapoport, Opt. Comm. 283, 1585–1597 (2009)

    Article  ADS  Google Scholar 

  47. T. Mizumoto, Y. Naito, IEEE Transactions Microw. Theory Techniques 30, 922–925 (1982)

    Article  ADS  Google Scholar 

  48. M.J. Ablowitz, Z.H. Musslimani, Physical Rev. Letters 87, 254102 (2001)

    Article  ADS  Google Scholar 

  49. P. Tassin, G. Van der Sande, N. Veretenov, P. Kockaert, I. Veretennicoff, M. Tlidi, Optics Express 14, 9338–9343 (2006)

    Article  ADS  Google Scholar 

  50. A.D. Boardman, Y.G. Rapoport, N. King, V.N. Malnev, J. Optical Society Am. B 24, A53 (2007)

    Google Scholar 

  51. G. D’Aguanno, N. Mattiucci, M.J. Bloemer, J. Optical Society Am. B 25, 1236 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan D. Boardman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boardman, A.D., Tsakmakidis, K.L., Mitchell-Thomas, R.C., King, N.J., Rapoport, Y.G., Hess, O. (2015). From ‘Trapped Rainbow’ Slow Light to Spatial Solitons . In: Shadrivov, I., Lapine, M., Kivshar, Y. (eds) Nonlinear, Tunable and Active Metamaterials. Springer Series in Materials Science, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-08386-5_9

Download citation

Publish with us

Policies and ethics