Skip to main content

Parametric Amplification of Magneto-Inductive Waves

  • Chapter
  • First Online:
Nonlinear, Tunable and Active Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 200))

  • 2023 Accesses

Abstract

Parametric amplification is a method of low-noise signal amplification of that operates by mixing the signal with a high-frequency, high power pump in a single non-linear reactive component, a varactor diode. Here its application to the amplification of magneto-inductive (MI) waves is demonstrated. MI waves are slow waves that propagate in linear chains of magnetically coupled L-C resonators known as MI waveguides. Such waveguides can be formed into ring resonant structures, and used for signal detection in magnetic resonance imaging (MRI). MI waves and waveguides are first reviewed. The theory of parametric amplification in single resonant elements is then described, and extended to travelling wave structures and ring resonators. Experimental verification is presented for systems designed to operate at 63.85 MHz, the frequency for \(^1\)H MRI in a 1.5 T magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magneto-inductive waveguide. Elect. Lett. 38, 371–373 (2002)

    Article  Google Scholar 

  2. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment. Elect. Lett. 39, 215–217 (2003)

    Article  Google Scholar 

  3. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys. 92, 6252–6261 (2002)

    Article  ADS  Google Scholar 

  4. E. Shamonina, L. Solymar, Magneto-inductive waves supported by metamaterial elements: components for a one-dimensional waveguide. J. Phys. D Appl. Phys. 37, 362–367 (2004)

    Article  ADS  Google Scholar 

  5. R.R.A. Syms, E. Shamonina, L. Solymar, Magneto-inductive waveguide devices. IEE Proc. Microw. Antennas Propag. 153, 111–121 (2006)

    Article  Google Scholar 

  6. R.R.A. Syms, I.R. Young, L. Solymar, Low-loss magneto-inductive waveguides. J. Phys. D Appl. Phys. 39, 3945–3951 (2006)

    Article  Google Scholar 

  7. R.R.A. Syms, O. Sydoruk, E. Shamonina, L. Solymar, Higher order interactions in magneto-inductive waveguides. Metamaterials 1, 44–51 (2007)

    Article  ADS  Google Scholar 

  8. S. Maslovski, P. Ikonen, I. Kolmakov, S. Tretyakov, Artificial magnetic materials based on the new magnetic particle: metasolenoid. PIER 54, 61–81 (2005)

    Article  Google Scholar 

  9. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Experimental and theoretical study of magneto-inductive waves supported by one-dimensional arrays of "Swiss rolls". J. Appl. Phys. 95, 4488–4493 (2004)

    Article  ADS  Google Scholar 

  10. A. Radkovskaya, M. Shamonin, C.J. Stevens, G. Faulkner, D.J. Edwards, E. Shamonina, L. Solymar, An experimental study of the properties of magnetoinductive waves in the presence of retardation. J. Magn. Magn. Mater. 300, 29–32 (2006)

    Article  ADS  Google Scholar 

  11. I.V. Shadrivov, A.N. Reznik, Y.S. Kivshar, Magnetoinductive waves in arrays of split-ring resonators. Physica B 394, 180–183 (2007)

    Article  ADS  Google Scholar 

  12. H. Liu, Y.M. Liu, S.M. Wang, S.N. Zhu, X. Zhang, Coupled magnetic plasmons in metamaterials. Phys. Status Solidi B 246, 1397–1406 (2009)

    Article  ADS  Google Scholar 

  13. M. Decker, S. Burger, S. Linden, M. Wegener, Magnetization waves in split-ring resonator arrays: evidence for retardation effects. Phys. Rev. B 80, 193102 (2009)

    Article  ADS  Google Scholar 

  14. G. Dolling, M. Wegener, A. Schädle, S. Burger, S. Linden, Observation of magnetization waves in negative-index photonic metamaterials. Appl. Phys. Lett. 89, 231118 (2006)

    Article  ADS  Google Scholar 

  15. A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljacik, Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.P. Sample, D.A. Meyer, J.R. Smith, Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Industr. Electron. 58, 544–554 (2011)

    Article  Google Scholar 

  17. W.X. Zhong, C.K. Lee, S.Y.R. Hui, Wireless power domino-resonator systems with non-coaxial axes and circular structures. IEEE Trans. Power Electron. 27, 4750–4762 (2012)

    Article  Google Scholar 

  18. Z. Sun, I.F. Akyildiz, Magnetic induction communications for wireless underground sensor networks. IEEE Trans. Antennas Propag. 58, 2426–2435 (2010)

    Article  Google Scholar 

  19. C.J. Stevens, C.W.T. Chan, K. Stamatis, D.J. Edwards, Magnetic metamaterials as 1-D data transfer channels: an application for magneto-inductive waves. IEEE Trans. Microw. Theory Tech. 58, 1248–1256 (2010)

    Article  ADS  Google Scholar 

  20. T. Floume, Magneto-inductive conductivity sensors. Metamaterials 5, 206–217 (2011)

    Article  ADS  Google Scholar 

  21. M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Microstructured magnetic materials for RF flux guides. Science 291, 849–851 (2001)

    Article  ADS  Google Scholar 

  22. M.C.K. Wiltshire, J.V. Hajnal, J.B. Pendry, D.J. Edwards, C.J. Stevens, Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires. Opt. Express 11, 709–714 (2003)

    Article  ADS  Google Scholar 

  23. M.J. Freire, R. Marques, Planar magnetoinductive lens for three-dimensional subwavelength imaging. Appl. Phys. Lett. 86, 182505 (2005)

    Article  ADS  Google Scholar 

  24. M.J. Freire, R. Marques, L. Jelinek, Experimental demonstration of a \(\mu = -1\) metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008)

    Article  ADS  Google Scholar 

  25. L. Solymar, O. Zhuromskyy, O. Sydoruk, E. Shamonina, I.R. Young, R.R.A. Syms, Rotational resonance of magnetoinductive waves: basic concept and application to nuclear magnetic resonance. J. Appl. Phys. 99, 123908 (2006)

    Article  ADS  Google Scholar 

  26. R.R.A. Syms, T. Floume, I.R. Young, L. Solymar, M. Rea, Flexible magnetoinductive ring MRI detector: design for invariant nearest neighbour coupling. Metamaterials 4, 1–14 (2010)

    Article  ADS  Google Scholar 

  27. R.R.A. Syms, L. Solymar, I.R. Young, Periodic analysis of MR-safe transmission lines. IEEE J. Sel. Top. Quantum Electron. 16, 433–440 (2010)

    Article  Google Scholar 

  28. R.R.A. Syms, I.R. Young, M.M. Ahmad, M. Rea, Magnetic resonance imaging with linear magneto-inductive waveguides. J. Appl. Phys. 112, 114911 (2012)

    Article  ADS  Google Scholar 

  29. R.R.A. Syms, I.R. Young, L. Solymar, T. Floume, Thin-film magneto-inductive cables. J. Phys. D Appl. Phys. 43, 055102 (2010)

    Article  ADS  Google Scholar 

  30. R.R.A. Syms, L. Solymar, Bends in magneto-inductive waveguides. Metamaterials 4, 161–169 (2010)

    Article  ADS  Google Scholar 

  31. R.R.A. Syms, L. Solymar, I.R. Young, Broad-band coupling transducers for magneto-inductive cable. J. Phys. D Appl. Phys. 43, 285003 (2010)

    Article  Google Scholar 

  32. O. Sydoruk, Resistive power divider for magneto-inductive waveguides. Elect. Lett. 47, 549–550 (2011)

    Article  Google Scholar 

  33. R.R.A. Syms, L. Solymar, Magneto-inductive phase shifters and interferometers. Metamaterials 5, 155–161 (2011)

    Article  ADS  Google Scholar 

  34. Y. Yuan, B.-I. Popa, S.A. Cummer, Zero loss magnetic metamaterials using powered active unit cells. Opt. Express 17, 16135–16143 (2009)

    Article  ADS  Google Scholar 

  35. K.Z. Rajab, Y. Hao, D. Bao, C.G. Parini, J. Vazquez, M. Philippakis, Stability of active magnetoinductive metamaterials. J. Appl. Phys. 108, 054904 (2010)

    Article  ADS  Google Scholar 

  36. W.W. Mumford, Some notes on the history of parametric transducers. Proc. IRE 48, 848–853 (1960)

    Article  Google Scholar 

  37. L.A. Blackwell, K.L. Kotzebue, Semiconductor-Diode Parametric Amplifiers (Prentice Hall, Englewood Cliffs, 1961)

    Google Scholar 

  38. D.P. Howson, R.B. Smith, Parametric Amplifiers (McGraw-Hill, New York, 1970)

    Google Scholar 

  39. G.A. Klotzbaugh, Phase considerations in degenerate parametric amplifier circuits. Proc. IRE 57, 1782–1783 (1959)

    Google Scholar 

  40. G.L. Matthaei, Experimental verification of the phase relationships in parametric amplifiers. IEEE Trans. Microw. Theory Tech. MTT–12, 365–367 (1964)

    Article  ADS  Google Scholar 

  41. H. Heffner, G. Wade, Gain, bandwidth and noise characteristics of a variable parameter amplifier. J. Appl. Phys. 29, 1332–1331 (1958)

    Article  Google Scholar 

  42. C.S. Aitchison, R. Davies, P.J. Gibson, A simple diode parametric amplifier design for use at S, C and X band. IEEE Trans. Microw. Theory Tech. MTT–15, 22–31 (1967)

    Article  ADS  Google Scholar 

  43. Y. Kinoshita, M. Maeda, An 18 GHz single-tuned parametric amplifier with large gain bandwidth product. IEEE Trans. Microw. Theory Tech. 18, 409–410 (1970)

    Article  ADS  Google Scholar 

  44. S. Takahashi, M. Nojima, T. Fukuda, A. Yamada, K-band, cryogenically cooled, wideband nondegenerate parametric amplifier. IEEE Trans. Microw. Theory Tech. 18, 1176–1178 (1970)

    Article  ADS  Google Scholar 

  45. J.R. Pierce, Traveling-wave tubes. Proc. IRE 35, 108–111 (1947)

    Article  Google Scholar 

  46. D. Schiffler, J.A. Nation, G.S. Kerslick, A high-power, traveling wave tube amplifier. IEEE Trans. Plasma Sci. 18, 546–552 (1990)

    Article  ADS  Google Scholar 

  47. J.T. De Jager, Parametric amplifiers for radio astronomy. Solid State Electron. 4, 266–270 (1962)

    Article  ADS  Google Scholar 

  48. M.P. Hughes, E. Moley, D.R. Parenti, J.J. Whelehan, A 5 Gc/s parametric receiver for radio astronomy. IEEE Trans. Antennas Propag. 13, 432–436 (1965)

    Article  ADS  Google Scholar 

  49. P.K. Tien, Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys. 29, 1347–1357 (1958)

    Article  ADS  MATH  Google Scholar 

  50. P.P. Lombardo, E.W. Sard, Low-frequency prototype traveling-wave reactance amplifier. Proc. IRE 47, 995–996 (1959)

    Google Scholar 

  51. R.C. Honey, F.M.T. Jones, A wide-band UHF traveling-wave variable reactance amplifier. IRE Trans. Microw. Theory Tech. MTT–8, 351–361 (1960)

    Google Scholar 

  52. M. Lapine, M. Gorkunov, Three-wave coupling of microwaves in metamaterials with nonlinear resonant conductive elements. Phys. Rev. E 70, 66601 (2004)

    Article  ADS  Google Scholar 

  53. A.B. Kozyrev, H. Hongjoon Kim, D.W. van der Weide, Parametric amplification in left-handed transmission line media. Appl. Phys. Lett. 88, 264101 (2006)

    Article  ADS  Google Scholar 

  54. O. Sydoruk, E. Shamonina, L. Solymar, Parametric amplification in coupled magnetoinductive waveguides. J. Phys. D: Appl. Phys. 40, 6879–6887 (2007)

    Article  ADS  Google Scholar 

  55. R.R.A. Syms, I.R. Young, L. Solymar, Three-frequency parametric amplification in magneto-inductive ring resonators. Metamaterials 2, 122–134 (2008)

    Article  ADS  Google Scholar 

  56. T. Floume, R.R.A Syms, L. Solymar, M.R. Young, A practical parametric magneto-inductive ring detector, in Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, 30 Aug–4 Sept 2009, pp 132–134

    Google Scholar 

  57. R.R.A. Syms, T. Floume, I.R. Young, L. Solymar, M. Rea, Parametric amplification of magnetic resonance images. IEEE Sens. J. 12, 1836–1845 (2012)

    Article  Google Scholar 

  58. C.E. Hayes, W.A. Edelstein, J.F. Schenck, O.M. Mueller, M.J. Eash, An efficient, highly homogeneous radiofrequency coil for whole-body nmr imaging at 1.5T. Magn. Reson. 63, 622–628 (1985)

    ADS  Google Scholar 

  59. J. Tropp, The theory of the bird cage resonator. J. Magn. Reson. 82, 51–62 (1989)

    ADS  Google Scholar 

  60. M.C. Leifer, Resonant modes of the birdcage coil. J. Magn. Reson. 124, 51–60 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to Dr. Marc Rea for carrying out the MR imaging and Prof. Wady Gedroyc for scanner access, and acknowledge many useful discussions with Dr. Katya Shamonina, Dr. Oleksiy Sydoruk and Dr. Mike Wiltshire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. A. Syms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Syms, R.R.A., Floume, T., Solymar, L., Young, I.R. (2015). Parametric Amplification of Magneto-Inductive Waves. In: Shadrivov, I., Lapine, M., Kivshar, Y. (eds) Nonlinear, Tunable and Active Metamaterials. Springer Series in Materials Science, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-08386-5_3

Download citation

Publish with us

Policies and ethics