Skip to main content

A Canonical Duality Approach for the Solution of Affine Quasi-Variational Inequalities

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 95))

Abstract

We apply a sequential dual canonical transformation on the global optimization problem resulting from the reformulation of the Karush–Kuhn–Tucker conditions of affine quasi-variational inequalities (QVIs) using the Fischer-Burmeister complementarity function. Canonical duality is generally able to provide conditions for a critical point of the dual formulation to be the corresponding point of a global optimum of the original problem. By studying the new dual formulation it is possible to obtain properties that are not evident from the original one and that can be useful to develop new methods for the solution of (not necessarily affine) QVIs. The resulting formulation is canonically dual to the original in the sense that there is no duality gap between critical points of the original problem and those of the dual one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol. 543, pp. 83–156. Springer, Berlin (1976)

    Chapter  Google Scholar 

  3. Outrata, J., Kocvara, M.: On a class of quasi-variational inequalities. Optim. Methods Softw. 5, 275–295 (1995)

    Article  Google Scholar 

  4. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht/Boston (1998)

    Book  MATH  Google Scholar 

  5. Pang, J.-S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005) (Erratum: ibid 6, 373–375 (2009))

    Google Scholar 

  6. Chan, D., Pang, J.-S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fukushima, M.: A class of gap functions for quasi-variational inequality problems. J. Ind. Manag. Optim. 3, 165–171 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harms, N., Kanzow, C., Stein, O.: Smoothness Properties of a Regularized Gap Function for Quasi-Variational Inequalities. Preprint 313, Institute of Mathematics, University of Würzburg, Würzburg (March 2013)

    Google Scholar 

  9. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. CORE Discussion Paper 2006/107, Catholic University of Louvain, Center for Operations Research and Econometrics (2006)

    Google Scholar 

  10. Noor, M.A.: On general quasi-variational inequalities. J. King Saud Univ. 24, 81–88 (2012)

    Article  Google Scholar 

  11. Ryazantseva, I.P.: First-order methods for certain quasi-variational inequalities in Hilbert space. Comput. Math. Math. Phys 47, 183–190 (2007)

    Article  MathSciNet  Google Scholar 

  12. Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Prog. Ser. A (2013). doi:10.1007/s10107-013-0637-0

    Google Scholar 

  13. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, New York (1992)

    MATH  Google Scholar 

  14. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)

    Google Scholar 

  15. Dreves, A., Facchinei, F., Kanzow, C., Sagratella, S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  17. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17(1/4), 127–160 (2000)

    Article  MATH  Google Scholar 

  18. Gao, D.Y.: Canonical duality theory: theory, method, and applications in global optimization. Comput. Chem. 33, 1964–1972 (2009)

    Article  Google Scholar 

  19. Wang, Z.B., Fang, S.C., Gao, D.Y., Xing, W.X.: Canonical dual approach to solving the maximum cut problem. J. Glob. Optim. 54, 341–352 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011)

    Article  MathSciNet  Google Scholar 

  21. Gao, D.Y., Ruan, N., Pardalos, P.M.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Pardalos, P.M., Ye, Y.Y., Boginski, V., Commander, C. (eds.) Sensors: Theory, Algorithms and Applications. Springer, New York (2010)

    Google Scholar 

  22. Ruan, N., Gao, D.Y.: Global optimal solutions to a general sensor network localization problem. Perform. Eval. (2013, to appear). Published online at http://arxiv.org/submit/654731

  23. Latorre, V., Gao, D.Y.: Canonical dual solution to nonconvex radial basis neural network optimization problem. Neurocomputing 134, 189–197 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Latorre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Latorre, V., Sagratella, S. (2015). A Canonical Duality Approach for the Solution of Affine Quasi-Variational Inequalities. In: Gao, D., Ruan, N., Xing, W. (eds) Advances in Global Optimization. Springer Proceedings in Mathematics & Statistics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-08377-3_31

Download citation

Publish with us

Policies and ethics