Skip to main content

Topology Optimization of Microstructures for Multi-Functional Graded Composites

  • Conference paper
  • First Online:
Advances in Global Optimization

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 95))

  • 2239 Accesses

Abstract

Functionally graded materials (FGMs) are inhomogeneous composites which are characterized by gradual variation in their physical properties. This study proposes a computational approach based on the bi-directional evolutionary structural optimization (BESO) for topologically designing microstructures of such materials with multi-functional properties, e.g. bulk modulus and thermal conductivity. It is assumed that the base cells are composed of two constituents. The smooth transition between adjacent base cells is realized by considering three base cells at each stage of the optimization. Effectiveness and efficiency of the proposed approach has been demonstrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bever, M.B., Duwez, P.E.: Gradients in composite materials. Mater. Sci. Eng. 10, 1–8 (1972)

    Article  Google Scholar 

  2. Shen, M., Bever, M.B.: Gradients in polymeric materials. J. Mater. Sci. 7, 741–746 (1972)

    Article  Google Scholar 

  3. Koizumi, M.: FGM activities in Japan. Compos. Part B 28(1–2), 1–4 (1997). doi:10.1016/s1359-8368(96)00016-9

    Article  Google Scholar 

  4. Hirai, T., Chen, L.: Recent and prospective development of functionally graded materials in Japan. Mater. Sci. Forum 308–311, 509–514 (1999). doi:10.4028/www.scientific.net/MSF.308-311.509

    Article  Google Scholar 

  5. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(5), 195–216 (2007). doi:10.1115/1.2777164

    Article  Google Scholar 

  6. Lin, C.-Y., Hsiao, C.-C., Chen, P.-Q., Hollister, S.J.: Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29(16), 1747–1754 (2004)

    Article  Google Scholar 

  7. Chen, K.-Z., Feng, X.-A.: CAD modeling for the components made of multi heterogeneous materials and smart materials. Comput. Aided Des. 36(1), 51–63 (2004). doi:10.1016/s0010-4485(03)00077-0

    Article  Google Scholar 

  8. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994). doi:10.1016/0020-7683(94)90154-6

    Article  MATH  MathSciNet  Google Scholar 

  9. Challis, V.J., Roberts, A.P., Wilkins, A.H.: Design of three dimensional isotropic microstructures for maximized stiffness and conductivity. Int. J. Solids Struct. 45(14–15), 4130–4146 (2008). http://dx.doi.org/10.1016/j.ijsolstr.2008.02.025

    Article  MATH  Google Scholar 

  10. Torquato, S., Hyun, S., Donev, A.: Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. J. Appl. Phys. 94(9), 5748–5755 (2003). doi:10.1063/1.1611631

    Article  Google Scholar 

  11. Guest, J.K., Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43(22–23), 7028–7047 (2006). http://dx.doi.org/10.1016/j.ijsolstr.2006.03.001

    Article  MATH  Google Scholar 

  12. Cadman, J., Zhou, S., Chen, Y., Li, Q.: On design of multi-functional microstructural materials. J. Mater. Sci. 48(1), 51–66 (2012). doi:10.1007/s10853-012-6643-4

    Article  Google Scholar 

  13. de Kruijf, N., Zhou, S., Li, Q., Mai, Y.-W.: Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44(22–23), 7092–7109 (2007). http://dx.doi.org/10.1016/j.ijsolstr.2007.03.028

    Article  MATH  Google Scholar 

  14. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley & Sons, Chichester (2010)

    Book  Google Scholar 

  15. Huang, X., Radman, A., Xie, Y.M.: Topological design of microstructures of cellular materials for maximum bulk or shear modulus. Comput. Mater. Sci. 50(6), 1861–1870 (2011). doi:10.1016/j.commatsci.2011.01.030

    Article  Google Scholar 

  16. Rozvany, G.I.N., Zhou, M., Birker, T.: Generalized shape optimization without homogenization. Struct. Multidiscip. Optim. 4(3), 250–252 (1992). doi:10.1007/bf01742754

    Article  Google Scholar 

  17. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Application. Springer, Berlin (2003)

    Google Scholar 

  18. Huang, X., Xie, Y., Jia, B., Li, Q., Zhou, S.: Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct. Multidiscip. Optim. 46(3), 385–398 (2012). doi:10.1007/s00158-012-0766-8

    Article  MATH  MathSciNet  Google Scholar 

  19. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69(6), 707–717 (1998). doi:10.1016/s0045-7949(98)00131-x

    Article  MATH  Google Scholar 

  20. Hassani, B., Hinton, E.: A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations. Comput. Struct. 69(6), 719–738 (1998). doi:10.1016/s0045-7949(98)00132-1

    Article  Google Scholar 

  21. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988). http://dx.doi.org/10.1016/0045-7825(88)90086-2

    Article  Google Scholar 

  22. Haug, E.J., Choi, K.K., Komkov, V.: Design Sensitivity Analysis of Structural Systems. Academic, Orlando (1986)

    MATH  Google Scholar 

  23. Zhou, S., Li, Q.: Computational design of multi-phase microstructural materials for extremal conductivity. Comput. Mater. Sci. 43(3), 549–564 (2008). http://dx.doi.org/10.1016/j.commatsci.2007.12.021

    Article  Google Scholar 

  24. Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multidiscip. Optim. 40(1–6), 409–416 (2010). doi:10.1007/s00158-009-0382-4

    Article  MATH  MathSciNet  Google Scholar 

  25. Radman, A., Huang, X., Xie, Y.M.: Topology optimization of functionally graded cellular materials. J. Mater. Sci. 48(4), 1503–1510 (2013). doi:10.1007/s10853-012-6905-1

    Article  Google Scholar 

  26. Radman, A., Huang, X., Xie, Y.M.: Topological optimization for the design of microstructures of isotropic cellular materials. Eng. Optim. 45(11), 1331–1348 (2013). doi:10.1080/0305215x.2012.737781

    Article  MathSciNet  Google Scholar 

  27. Zhou, S., Li, Q.: Microstructural design of connective base cells for functionally graded materials. Mater. Lett. 62, 4022–4024 (2008). doi:10.1016/j.matlet.2008.05.058

    Article  Google Scholar 

  28. Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43(14), 1039–1049 (2007). doi:10.1016/j.finel.2007.06.006

    Article  Google Scholar 

  29. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963). doi:10.1016/0022-5096(63)90060-7

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Radman, A., Huang, X., Xie, Y.M. (2015). Topology Optimization of Microstructures for Multi-Functional Graded Composites. In: Gao, D., Ruan, N., Xing, W. (eds) Advances in Global Optimization. Springer Proceedings in Mathematics & Statistics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-08377-3_27

Download citation

Publish with us

Policies and ethics