Advertisement

An Efficient Method for Community Detection Based on Formal Concept Analysis

  • Selmane Sid Ali
  • Fadila Bentayeb
  • Rokia Missaoui
  • Omar Boussaid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)

Abstract

This work aims at proposing an original approach based on formal concept analysis (FCA) for community detection in social networks (SN). Firstly, we study FCA methods which partially detect community in social networks. Secondly we propose a GroupNode modularity function whose goal is to improve a partial detection method taking into account all actors of the social network. Our approach is validated through different experiments based on real known social networks in the field and a synthetic benchmark networks. In addition, we adapted the F-measure function in the case of multi-class in order to evaluate the quality of a detected community.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Falzon, L.: Determining groups from the clique structure in large social networks. Social Networks 22(2), 159–172 (2000)CrossRefGoogle Scholar
  2. 2.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36 (2007)CrossRefGoogle Scholar
  3. 3.
    Freeman, L.C.: Cliques, galois lattices, and the structure of human social groups. Social Networks 18(3), 173–187 (1996)CrossRefGoogle Scholar
  4. 4.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer-Verlag New York, Inc. (1999); Translator-C. FranzkeGoogle Scholar
  5. 5.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS 99(12), 7821–7826 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative analysis. Physical Review E 80(5), 056117 (2009)Google Scholar
  7. 7.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Missaoui, R.: Analyse de réseaux sociaux par l’analyse formelle de concepts. In: EGC, pp. 3–4 (2013)Google Scholar
  9. 9.
    Newman, M.E.: Detecting community structure in networks. The European Physical Journal B-Condensed Matter and Complex Systems 38(2), 321–330 (2004)CrossRefGoogle Scholar
  10. 10.
    Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in knowledge processing: A survey on applications. Expert Systems with Applications (2013)Google Scholar
  11. 11.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Information Processing & Management 45(4), 427–437 (2009)CrossRefGoogle Scholar
  12. 12.
    Tummarello, G., Morbidoni, C.: The dbin platform: A complete environment for semanticweb communities. Web Semantics: Science, Services and Agents on the World Wide Web 6(4) (2008)Google Scholar
  13. 13.
    Van Rijsbergen, C.: Information retrieval. dept. of computer science, university of glasgow (1979), citeseer.ist.psu.edu/vanrijsbergen79information.html
  14. 14.
    Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 314–339. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 452–473 (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Selmane Sid Ali
    • 1
  • Fadila Bentayeb
    • 1
  • Rokia Missaoui
    • 2
  • Omar Boussaid
    • 1
  1. 1.Laboratoire ERICUniversité Lyon 2France
  2. 2.Université du Québec en OutaouaisCanada

Personalised recommendations