Creating Polygon Models for Spatial Clusters

  • Fatih Akdag
  • Christoph F. Eick
  • Guoning Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)


This paper proposes a novel methodology for creating efficient polygon models for spatial datasets. A comprehensive analysis framework is proposed that takes a spatial cluster as an input and generates a polygon model for the cluster as an output. The framework creates a visually appealing, simple, and smooth polygon for the cluster by minimizing a fitness function. We propose a novel polygon fitness function for this task. Moreover, a novel emptiness measure is introduced for quantifying the presence of empty spaces inside polygons.


Spatial data mining Polygon Models for Point Sets Spatial Clustering Polygon Fitness Function Polygon Emptiness Measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, Z., Wang, S., Forestier, G., Puissant, A., Eick, C.F.: Analyzing the Composition of Cities Using Spatial Clustering. In: Proc. 2nd ACM SIGKDD International Workshop on Urban Computing, Chicago, Illinois (2013)Google Scholar
  2. 2.
    Wang, S., Chen, C.S., Rinsurongkawong, V., Akdag, F., Eick, C.F.: A Polygon-based Methodology for Mining Related Spatial Datasets. In: Proc. of ACM SIGSPATIAL International Workshop on Data Mining for Geoinformatics (DMG), San Jose (2010)Google Scholar
  3. 3.
    Galton, A., Duckham, M.: What is the region occupied by a set of points? In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 81–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition 41, 3224–3236 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29, 551–559 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chaudhuri, A.R., Chaudhuri, B.B., Parui, S.K.: A novel approach to computation of the shape of a dot pattern and extraction of its perceptual border. Computer Vision and Image Understanding 68, 57–275 (1997)CrossRefGoogle Scholar
  7. 7.
    Moreira, A., Santos, M.Y.: Concave hull: a k-nearest neighbours approach for the computation of the region occupied by a set of points. In: International Conference on Computer Graphics Theory and Applications GRAPP (2007)Google Scholar
  8. 8.
    Chen, C.S., Rinsurongkawong, V., Eick, C.F., Twa, M.D.: Change Analysis in Spatial Data by Combining Contouring Algorithms with Supervised Density Functions. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 907–914. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Brinkhoff, T., Kriegel, H.-P., Schneider, R., Braun, A.: Measuring the Complexity of Polygonal Objects. In: Proc. of the Third ACM International Workshop on Advances in Geographical Information Systems, pp. 109–117 (1995)Google Scholar
  10. 10.
    Salvador, S., Chan, P.: Determining the Number of Clusters/Segments in Hierarchical clustering/Segmentation Algorithm. In: ICTAI, pp. 576–584 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fatih Akdag
    • 1
  • Christoph F. Eick
    • 1
  • Guoning Chen
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonUSA

Personalised recommendations