Advertisement

Enhancing Traditional Data Warehousing Architectures with Real-Time Capabilities

  • Alfredo Cuzzocrea
  • Nickerson Ferreira
  • Pedro Furtado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)

Abstract

In this paper we explore the possibility of taking a data warehouse with a traditional architecture and making it real-time-capable. Real-time in warehousing concerns data freshness, the capacity to integrate data constantly, or at a desired rate, without requiring the warehouse to be taken offline. We discuss the approach and show experimental results that prove the validity of the solution.

Keywords

Data Warehouse Dimension Table Star Schema Merging Operat Bitmap Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vassiliadis, P., Simitsis, A.: Near Real Time ETL. New Trends in Data Warehousing and Data Analysis. Annals of Information Systems 3, 1–31 (2009)CrossRefGoogle Scholar
  2. 2.
    Jain, T., Rajasree, S., Saluja, S.: Refreshing Datawarehouse in Near Real-Time. International Journal of Computer Applications 46(18), 24–29 (2012)CrossRefGoogle Scholar
  3. 3.
    Zuters, J.: Near Real-Time Data Warehousing with Multi-stage Trickle and Flip. In: Grabis, J., Kirikova, M. (eds.) BIR 2011. LNBIP, vol. 90, pp. 73–82. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Santos, R.J., Bernardino, J.: Real-Time Data Warehouse Loading Methodology. In: Proceedings of ACM IDEAS, pp. 49–58. ACM Press, New York (2008)Google Scholar
  5. 5.
    Nguyen, M., Tjoav, A.M.: Zero-Latency Data Warehousing for Heterogeneous Data Sources and Continuous Data Streams. In: Kotsis, G., Bressan, S., Ibrahim, I.K. (eds.) iiWAS, vol. 170. Austrian Computer Society (2003)Google Scholar
  6. 6.
    Zhu, Y., An, L., Liu, S.: Data Updating and Query in Real-time Data Warehouse System. In: Proceedings of IEEE CSSE, vol. 5, pp. 1295–1297. IEEE Computer Society, Washington, DC (2008)Google Scholar
  7. 7.
    Ferreira, N.: Realtime Warehouses: Architecture and Evaluation, MSc Thesis, U. Coimbra (June 2013)Google Scholar
  8. 8.
  9. 9.
    Oracle, Best Pratices for Real-time Data Warehousing, White Paper (August 2012)Google Scholar
  10. 10.
    Kim, N., Moon, S.: Concurrent View Maintenance Scheme for Soft Real-time Data Warehouse Systems. Journal of Information Science and Engineering 23(3), 725–741 (2007)Google Scholar
  11. 11.
    Jain, T., Rajasree, S., Saluja, S.: Refreshing Datawarehouse in Near Real-Time. International Journal of Computer Applications 46(18), 24–29 (2012)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Bao, Y., Leng, F., Yu, G.: Study on Log-based Change Data Capture and Handling Mechanism in Real-time Data Warehouse. In: Proceedings of CSSE, vol. 4, pp. 478–481. IEEE Computer Society, Washington, DC (2008)Google Scholar
  13. 13.
    Ram, P., Do, L.: Extracting Delta for Incremental Data Warehouse Maintenance. In: Proceedings of ICDE, pp. 220–229. IEEE Computer Society, Washington, DC (2000)Google Scholar
  14. 14.
    Furtado, P.: Efficiently Processing Query-Intensive Databases over a Non-Dedicated Local Network. In: Proceedings of IPDPS, vol. 1, p. 72. IEEE Computer Society, Washington, DC (2005)Google Scholar
  15. 15.
    O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The Star Schema Benchmark and Augmented Fact Table Indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alfredo Cuzzocrea
    • 1
  • Nickerson Ferreira
    • 2
  • Pedro Furtado
    • 2
  1. 1.ICAR-CNR and University of CalabriaItaly
  2. 2.University of CoimbraPortugal

Personalised recommendations