Advertisement

Plethoric Answers to Fuzzy Queries: A Reduction Method Based on Query Mining

  • Olivier Pivert
  • Grégory Smits
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)

Abstract

Querying large-scale databases may often lead to plethoric answers, even when fuzzy queries are used. To overcome this problem, we propose to strengthen the initial query with additional predicates, selected among predefined ones according mainly to their degree of semantic relationship with the initial query. In the approach we propose, related predicates are identified by mining a repository of previously executed queries.

Keywords

Databases fuzzy queries plethoric answers cooperative answering query augmentation query mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezdek, J.: Pattern recognition with fuzzy objective function algorithm. Plenum Press, New York (1981)Google Scholar
  2. 2.
    Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational queries. Fuzzy Sets and Systems 159(12), 1450–1467 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bosc, P., Pivert, O.: SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bosc, P., Hadjali, A., Pivert, O., Smits, G.: On the use of fuzzy cardinalities for reducing plethoric answers to fuzzy queries. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 98–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bosc, P., Hadjali, A., Pivert, O., Smits, G.: Trimming plethoric answers to fuzzy queries: An approach based on predicate correlation. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 595–604. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM Transactions on Database Systems 27, 153–187 (2002)CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query results. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 888–899. Morgan Kaufmann (2004)Google Scholar
  8. 8.
    Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 34–51. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Corella, F., Lewison, K.: A brief overview of cooperative answering. In: Technical report (2009), http://www.pomcor.com/whitepapers/cooperative_responses.pdf
  10. 10.
    Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–322. Morgan Kaufmann (2002)Google Scholar
  11. 11.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proc. of the 13rd VLDB Conference, pp. 217–225 (1987)Google Scholar
  12. 12.
    Ozawa, J., Yamada, K.: Cooperative answering with macro expression of a database. In: Proc. of IPMU 1994, pp. 17–22 (1994)Google Scholar
  13. 13.
    Ozawa, J., Yamada, K.: Discovery of global knowledge in database for cooperative answering. In: Proc. of Fuzz-IEEE 1995, pp. 849–852 (1995)Google Scholar
  14. 14.
    Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press, London (2012)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pivert, O., Jaudoin, H., Brando, C., Hadjali, A.: A method based on query caching and predicate substitution for the treatment of failing database queries. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 436–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Ruspini, E.: A new approach to clustering. Information and Control 15(1), 22–32 (1969)CrossRefzbMATHGoogle Scholar
  17. 17.
    Smits, G., Pivert, O., Girault, T.: Reqflex: Fuzzy queries for everyone. PVLDB 6(12), 1206–1209 (2013)Google Scholar
  18. 18.
    Smits, G., Pivert, O., Hadjali, A.: Fuzzy cardinalities as a basis to cooperative answering. In: Pivert, O., Zadrozny, S. (eds.) Flexible Approaches in Data, Information and Knowledge Management. SCI, vol. 497, pp. 261–289. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Stefanidis, K., Drosou, M., Pitoura, E.: “You may also like” results in relational databases. In: Proc. of PersDB 2009 (2009)Google Scholar
  20. 20.
    Ughetto, L., Voglozin, W.A., Mouaddib, N.: Database querying with personalized vocabulary using data summaries. Fuzzy Sets and Systems 159(15), 2030–2046 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olivier Pivert
    • 1
  • Grégory Smits
    • 1
  1. 1.University of Rennes 1IrisaFrance

Personalised recommendations