Skip to main content

Integrating Cluster Analysis to the ARIMA Model for Forecasting Geosensor Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8502))

Abstract

Clustering geosensor data is a problem that has recently attracted a large amount of research. In this paper, we focus on clustering geophysical time series data measured by a geo-sensor network. Clusters are built by accounting for both spatial and temporal information of data. We use clusters to produce globally meaningful information from time series obtained by individual sensors. The cluster information is integrated to the ARIMA model, in order to yield accurate forecasting results. Experiments investigate the trade-off between accuracy and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrienko, G., Andrienko, N.: Interactive cluster analysis of diverse types of spatiotemporal data. SIGKDD Explor. Newsl. 11(2), 19–28 (2010)

    Article  MathSciNet  Google Scholar 

  2. Birant, D., Kut, A.: St-dbscan: An algorithm for clustering spatial temporal data. Data and Knowledge Engineering 60(1), 208–221 (2007)

    Article  Google Scholar 

  3. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice-Hall (1994)

    Google Scholar 

  4. Brockwell, P., Davis, R.: Time Series: Theory and Methods, 2nd edn. Springer (2009)

    Google Scholar 

  5. Hyndman, R., Khandakar, Y.: Automatic time series forecasting: The forecast package for r. Journal of Statistical Software 26(3) (2008)

    Google Scholar 

  6. Kamarianakis, Y., Prastacos, P.: Space-time modeling of traffic flow. Comput. Geosci. 31(2), 119–133 (2005)

    Article  Google Scholar 

  7. Kwiatkowski, D., Phillips, P.C., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics (54), 159–178 (1992)

    Google Scholar 

  8. Orkin, R.D.M.: Vital Statistics. McGraw-Hill, New York (1990)

    Google Scholar 

  9. Pravilovic, S., Appice, A., Malerba, D.: An intelligent technique for forecasting spatially correlated time series. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 457–468. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Qin, K., Chen, Y., Zhan, Y., Cheng, F.: Spatial clustering considering spatio-temporal correlation. In: 2011 19th International Conference on Geoinformatics, pp. 1–4 (2011)

    Google Scholar 

  11. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko, G.: Visually driven analysis of movement data by progressive clustering. Information Visualization 7(3), 225–239 (2008)

    Article  Google Scholar 

  12. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  13. Sershenfeld, N.A., Weigend, A.S.G.: The future of time series. In: Gershenfeld, A.N., Weigen, A.S. (eds.) Time Series Prediction: Forecasting the Future and Understanding the Past, pp. 1–70 (1993)

    Google Scholar 

  14. Tobler, W.: A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2), 234–240 (1970)

    Article  Google Scholar 

  15. Trasarti, R.: Mastering the Spatio-Temporal Knowledge Discovery Process. PhD thesis. University of Pisa Department of Computer Science, Italy (2010)

    Google Scholar 

  16. Zhang, P., Huang, Y., Shekhar, S., Kumar, V.: Correlation analysis of spatial time series datasets: A filter-and-refine approach. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 532–544. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pravilovic, S., Appice, A., Malerba, D. (2014). Integrating Cluster Analysis to the ARIMA Model for Forecasting Geosensor Data. In: Andreasen, T., Christiansen, H., Cubero, JC., Raś, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08326-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08325-4

  • Online ISBN: 978-3-319-08326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics