Local Characteristics of Minority Examples in Pre-processing of Imbalanced Data

  • Jerzy Stefanowski
  • Krystyna Napierała
  • Małgorzata Trzcielińska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)


Informed pre-processing methods for improving classifiers learned from class-imbalanced data are considered. We discuss different ways of analyzing the characteristics of local distributions of examples in such data. Then, we experimentally compare main informed pre-processing methods and show that identifying types of minority examples depending on their k nearest neighbourhood may help in explaining differences in performance of these methods. Finally, we exploit the information about the local neighbourhood to modify the oversampling ratio in a SMOTE–related method.


Local Characteristic Majority Class Local Neighbourhood Minority Class Class Imbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batista, G., Prati, R., Monard, M.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter 6(1), 20–29 (2004)CrossRefGoogle Scholar
  2. 2.
    Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W.: SMOTE: Synthetic Minority Over-sampling Technique. J. of Artificial Intelligence Research 16, 341–378 (2002)Google Scholar
  3. 3.
    He, H.: Yungian Ma: Imbalanced Learning. Foundations, Algorithms and Applications. IEEE - Wiley (2013)Google Scholar
  4. 4.
    Jo, T., Japkowicz, N.: Class Imbalances versus small disjuncts. SIGKDD Explorations 6(1), 40–49 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kubat, M., Matwin, S.: Addresing the curse of imbalanced training sets: one-side selection. In: Proc. of the 14th Int. Conf. on Machine Learning, pp. 179–186 (1997)Google Scholar
  6. 6.
    Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. Tech. Report A-2001-2. University of Tampere (2001)Google Scholar
  7. 7.
    Maciejewski, T., Stefanowski, J.: Local neighbourhood extension of SMOTE for mining imbalanced data. In: Proc. IEEE Symp. on Computational Intelligence and Data Mining, pp. 104–111 (2011)Google Scholar
  8. 8.
    Napierala, K.: Improving rule classifiers for imbalanced data. Ph.D. Thesis. Poznan University of Technology (2013)Google Scholar
  9. 9.
    Napierała, K., Stefanowski, J., Wilk, S.: Learning from Imbalanced Data in Presence of Noisy and Borderline Examples. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 158–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Napierala, K., Stefanowski, J.: Identification of different types of minority class examples in imbalanced data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 139–150. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving classification performance. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 283–292. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artifical Intelligence Research 6, 1–34 (1997)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Wilson, D.R., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning Journal 38, 257–286 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jerzy Stefanowski
    • 1
  • Krystyna Napierała
    • 1
  • Małgorzata Trzcielińska
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland

Personalised recommendations