EverMiner Prototype Using LISp-Miner Control Language

  • Milan Šimůnek
  • Jan Rauch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)


The goal of the EverMiner project is to run automatic data mining process starting with several items of initial domain knowledge and leading to new knowledge being inferred. A formal description of items of domain knowledge as well as of all particular steps of the process is used. The EverMiner project is based on the LISp-Miner software system which involves several data mining tools. There are experiments with the proposed approach realized by manual chaining of tools of the LISp-Miner. The paper describes experiences with the LISp-Miner Control Language which allows to transform a formal description of data mining process into an executable program.


Data Mining Association Rule Domain Knowledge Outer Loop Analytical Question 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foundations for a General Theory. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  2. 2.
    Hájek, P., Havránek, T.: GUHA 80: An Application of Artificial Intelligence to Data Analysis. Computers and Artificial Intelligence 1, 107–134 (1982)Google Scholar
  3. 3.
    Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76, 34–48 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ierusalimschy, R., Figueiredo, L.H., de Celes, W.: Lua an extensible extension language. Software: Practice & Experience 26, 635–652 (1996)Google Scholar
  5. 5.
    Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate post-processing of association rules by domain experts. Information Sciences 181, 419–434 (2011)CrossRefGoogle Scholar
  6. 6.
    Phillips, J., Buchanan, B.G.: Ontology guided knowledge discovery in databases. In: Proc. First International Conference on Knowledge Capture, pp. 123–130. ACM, Victoria (2001)Google Scholar
  7. 7.
    Rauch, J.: Formalizing Data Mining with Association Rules. In: Proceedings of 2012 IEEE International Conference on Granular Computing (GRC 2012), pp. 406–411. IEEE Computer Society, Los Alamitos (2012)CrossRefGoogle Scholar
  8. 8.
    Rauch, J.: EverMiner: consideration on knowledge driven permanent data mining process. International Journal of Data Mining, Modelling and Management 4(3), 224–243 (2012)CrossRefGoogle Scholar
  9. 9.
    Rauch, J. (ed.): Observational Calculi and Association Rules. SCI, vol. 469. Springer, Berlin (2013)zbMATHGoogle Scholar
  10. 10.
    Rauch, J., Šimůnek, M.: An Alternative Approach to Mining Association Rules. In: Lin, T.Y., Liau, C.-J., Ohsuga, S., Hu, X., Tsumoto, S. (eds.) Foundations of Data Mining and knowledge Discovery. SCI, vol. 6, pp. 211–231. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Rauch, J., Šimůnek, M.: Applying Domain Knowledge in AssociationRules Mining Process - First Experience. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 113–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Šimůnek, M.: Academic KDD Project LISp-Miner. In: Abraham, A., Franke, K., Köppen, M. (eds.) Intelligent Systems Design and Applications. ASC, vol. 23, pp. 263–272. Springer, Tulsa (2003)Google Scholar
  13. 13.
    Šimůnek, M.: LISp-Miner Control Language – description of scripting language implementation. Submitted for publication in Journal of System Integration, ISSN: 1804-2724
  14. 14.
    Šimůnek, M., Rauch, J.: EverMiner – Towards Fully Automated KDD Process. In: Funatsu, K., Hasegava, K. (eds.) New Fundamental Technologies in Data Mining, pp. 221–240. InTech, Rijeka (2011)Google Scholar
  15. 15.
    Sharma, S., Osei-Bryson, K.-M.: Toward an integrated knowledge discovery and data mining process model. The Knowledge Engineering Review 25 49–67 (2010)Google Scholar
  16. 16.
    Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Information Systems 29, 293–313 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Milan Šimůnek
    • 1
  • Jan Rauch
    • 1
  1. 1.Faculty of Informatics and StatisticsUniversity of EconomicsPrague 3Czech Republic

Personalised recommendations