Skip to main content

Processing Parameters and the Rate of Resorption

  • Chapter
  • First Online:
Resorbable Fiber-Forming Polymers for Biotextile Applications

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 758 Accesses

Abstract

There are number of factors that affect the rate of resorption of polymers. These factors can be broadly classified under mechanical properties, fabrication process parameters, and in vivo environmental conditions. Though all these factors are important for successful in vivo performance of these polymers, factors such as spinning parameters, processing conditions, sterilization techniques, and packaging are important from the manufacturer's stand point. Effect of these parameters on the resorption rate has been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Fambri, C. Migliaresi, K. Kesenci, E. Piskin, Biodegradable Polymers, in Integrated Biomaterials Science, ed. by R. Barbucci (Kluwer Academic/Plenum, Berlin, 2002), pp. 119–187

    Google Scholar 

  2. C.C. Chu, Biodegradation Properties, in Wound Closure Biomaterials and Devices, ed by C.C. Chu, J.A.V. Fraunhofer, H.P. Greisler (CRC Press, United States, 1997), pp. 131–235

    Google Scholar 

  3. W. Michaeli, R. von Oepen, Processing of degradable polymers. ANTEC, 796–804 (1994)

    Google Scholar 

  4. R. von Oepen, W. Michaeli, Injection moulding of biodegradable implants. Clin. Mater. 10(1–2), 21–28 (1992)

    Article  Google Scholar 

  5. C. Rauwendaal, Finite element studies of flow and temperature evolution in single screw extruders. Plast. Rubber Compos. 33(9–10), 390–396 (2004)

    Article  Google Scholar 

  6. A.l. Kelly, E.C. Brown, P.D. Coates, The effect of screw geometry on melt temperature profile in single screw extrusion. Polym. Eng. Sci. 46(12), 1706–1714 (2006)

    Google Scholar 

  7. T. Mori, H. Nishida, Y. Shirai, T. Endo, Effects of chain end structures on pyrolysis of poly(l-lactic acid) containing tin atoms. Polym. Degrad. Stab. 84(2), 243–251 (2004)

    Article  Google Scholar 

  8. K. Paakinaho, V. Ellä, S. Syrjälä, M. Kellomäki, Melt spinning of poly(l/d)lactide 96/4: effects of molecular weight and melt processing on hydrolytic degradation. Polym. Degrad. Stab. 94(3), 438–442 (2009)

    Article  Google Scholar 

  9. V. Ellä, L. Nikkola, M. Kellomäki, Process-induced monomer on a medical-grade polymer and its effect on short-term hydrolytic degradation. J. Appl. Polym. Sci. 119(5), 2996–3003 (2011)

    Article  Google Scholar 

  10. C. Golding, E. Ekevall, S. Wallace, R. Mather, The effect of degradation on the mechanical properties of biodegradable polylactide yarns and textiles, in Medical Textiles and Biomaterials for Healthcare: Incorporating Proceedings of MEDTEX03 International Conference and Exhibition on Healthcare and Medical Textiles, ed by S. Anand, J. Kennedy, M. Miraftab, S. Rajendran (Woodhead, Sawston, 2006), pp. 58–66

    Google Scholar 

  11. S.W. Shalaby, R.A. Johnson, Synthetic absorbable polyesters, in Biomedical Polymers: Designed-To-Degrade Systems, ed by S.W. Shalaby (Hanser Publishers, Munich, 1994), pp. 1–34

    Google Scholar 

  12. T. Zislis, S.A. Martin, E. Cerbas, J.R. Heath, J.L. Mansfield, J.O. Hollinger, A scanning electron microscopic study of in vitro toxicity of ethylene-oxide-sterilized bone repair materials. J. Oral Implantology 15(1), 41 (1989)

    Google Scholar 

  13. J. Kohn, S. Abramson, R. Langer, Bioresorbable and Bioerodible Materials, in Biomaterials Science—an Introduction to Materials in Medicine, ed by B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, 2nd edn (Elsevier, Netherlands, 2004), pp. 115–127

    Google Scholar 

  14. C.T. Williams, J.C. Middleton, K.R. Sims, R.P. Swaim, D.R. Whitfield, J.C. Yarbrough, Long-term stability of biodegradable polymers, in 17th Southern Biomedical Engineering Conference, 1998, p. 69

    Google Scholar 

  15. J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23), 2335–2346 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. King .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gajjar, C.R., King, M.W. (2014). Processing Parameters and the Rate of Resorption. In: Resorbable Fiber-Forming Polymers for Biotextile Applications. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08305-6_5

Download citation

Publish with us

Policies and ethics