Skip to main content

Lie Group Analysis of the Willmore and Membrane Shape Equations

  • Chapter
  • First Online:
Similarity and Symmetry Methods

Abstract

The present paper is concerned with the geometric Lie symmetry groups of the Willmore and shape equations—the Euler-Lagrange equations associated with the Willmore and Helfrich functionals. The ten-parameter group of special conformal transformations in the three-dimensional Euclidean space, which in known to be the symmetry group of the Willmore functional, is recognized as the largest group of geometric transformations admitted by these equations in Monge representation. The conserved currents of ten linearly independent conservation laws, which correspond to the variational symmetries of the Willmore equation and hold on its smooth solutions, are derived. The shape equation is found to admit only a six-parameter subgroup of the aforementioned ten-parameter group. Each symmetry admitted by the shape equation is its variational symmetry as well and the corresponding conserved currents are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernoulli D.: The 26th letter to Euler. In: Fuss, P.H. (ed.) Correspondence Mathématique et Physique de Quelques Célèbres Géomètres, vol. 2. St.-Pétersbourgh (1843)

    Google Scholar 

  2. Chen, B.-Y.: An Invariant of Conformal Mappings. Proc. Amer. Math. Soc. 40, 563–564 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. de Matteis G.: Group analysis of the membrane shape equation. In: Ablowitz, M., Boiti, M., Pempinelli, F., Prinari, B. (eds.) Nonlinear Physics: Theory and Experiment II, pp. 221–226. World Scientific, Singapore (2002). (see also cond-mat/0201044)

  4. de Matteis, G., Manno, G.: Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Commun. Pur. Appl. Anal. 13, 453–481 (2014)

    Article  MATH  Google Scholar 

  5. Djondjorov, P., Vassilev, V., Mladenov, I.: Analytic description and explicit parametrisation of the equilibrium shapes of elastic rings and tubes under uniform hydrostatic pressure. Int. J. Mech. Sci. 53, 355–364 (2011)

    Article  Google Scholar 

  6. Garay Ö. J.: Riemannian submanifolds shaped by the bending energy and its allies. In: Suh, Y. J. (ed.) Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop, National Institute for Mathematical Sciences and Grassmann Research Group, pp. 55–68 (2012)

    Google Scholar 

  7. Ginsparg P. and Moore G., Lectures on 2D Gravity and 2D String Theory, hep-th9304011.

    Google Scholar 

  8. Grunau, H-Ch.: Nonlinear questions in clamped plate models. Milan J. Math. 77, 171–204 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28c, 693–703 (1973)

    Google Scholar 

  10. Ibragimov, N.: Transformation Groups Applied to Mathematical Physics. Nauka, Moscow (1983) (English transl., Riedel, Boston 1985)

    Google Scholar 

  11. Kleinert, H.: The membrane properties of condensing strings. Phys. Lett. B 174, 335–341 (1986)

    Article  MathSciNet  Google Scholar 

  12. Konopelchenko, B.: On solutions of the shape equation for membranes and strings. Phys. Lett. B 414, 58–64 (1997)

    Article  MathSciNet  Google Scholar 

  13. Libai, A., Simmonds, J.: The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Olver, P.: Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics, vol. 107, Second Edition edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  15. Ou-Yang, Z.C., Helfrich, W.: Instability and deformation of a spherical vesicle by pressure. Phys. Rev. Lett. 59, 2486–2488 (1987)

    Article  Google Scholar 

  16. Ou-Yang, Z.C., Helfrich, W.: Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39, 5280–5288 (1989)

    Article  Google Scholar 

  17. Ou-Yang, Z.C., Ji-Xing, L., Yu-Zhang, X.: Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. World Scientific, Hong Kong (1999)

    Book  MATH  Google Scholar 

  18. Ou-Yang, Z.C., Tu, Z.C.: Overview of the study of complex shapes of fluid membranes, the Helfrich model and new applications. Int. J. Mod. Phys. B 28, 1330022 (2014)

    Article  Google Scholar 

  19. Ovsiannikov L.: Group Analysis of Differential Equations. Nauka, Moscow (1978) (English transl. Ames, W.F. (ed.) Academic Press, New York (1982))

    Google Scholar 

  20. Poisson S.D.: Mèmoire sur les surfaces elastiques. Cl. Sci. Mathem. Phys. Inst. de France 2, 167–225 (1812)

    Google Scholar 

  21. Polyakov, A.: The membrane properties of condensing strings. Phys. Lett. B103, 207–210 (1981)

    Article  MathSciNet  Google Scholar 

  22. Polyakov, A.: Fine structure of strings. Nucl. Phys. B 286, 406–412 (1986)

    Article  MathSciNet  Google Scholar 

  23. Thomsen, G.: Grundlagen der Konformen Flächentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 3, 31–56 (1924)

    Article  MathSciNet  Google Scholar 

  24. Tu, Z.-C.: Challenges in the theoretical investigations of lipid membrane configurations. Chin. Phys. B 22, 028701 (2013)

    Article  Google Scholar 

  25. Tu Z.C., Ou-Yang Z.C.: Recent Theoretical Advances in Elasticity of Membranes Following Helfrich’s Spontaneous Curvature Model. Advances in Colloid and Interface Science, 2014, in press.

    Google Scholar 

  26. Vassilev, V., Mladenov, I.: Geometric symmetry groups, conservation laws and group-invariant solutions of the Willmore equation. Proceedings of The Fifth International Conference on Geometry, Integrability and Quantization, SOFTEX, Sofia, pp. 246–265 (2004)

    Google Scholar 

  27. Vassilev V., Djondjorov P., Mladenov I.: Cylindrical equilibrium shapes of fluid membranes. J. Phys. A Math. Theor. 41 435201 (16pp) (2008)

    Google Scholar 

  28. White, J.: A global invariant of conformal mappings in space. Proc. Amer. Math. Soc. 38, 162–164 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Willmore T.: Note on Embedded Surfaces. An. Ş tiinţ. Univ. “Al. I. Cuza” Iaşi Seçt. Ia Mat. 11 493–496 (1965)

    Google Scholar 

  30. Willmore, T.: Total Curvature in Riemannian Geometry. Wiley, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil M. Vassilev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vassilev, V.M., Djondjorov, P.A., Mladenov, I.M. (2014). Lie Group Analysis of the Willmore and Membrane Shape Equations. In: Ganghoffer, JF., Mladenov, I. (eds) Similarity and Symmetry Methods. Lecture Notes in Applied and Computational Mechanics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-08296-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08296-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08295-0

  • Online ISBN: 978-3-319-08296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics