Skip to main content

Symmetries of Hamiltonian Systems on Symplectic and Poisson Manifolds

  • Chapter
  • First Online:
Similarity and Symmetry Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 73))

Abstract

This text presents some basic notions in symplectic geometry, Poisson geometry, Hamiltonian systems, Lie algebras and Lie groups actions on symplectic or Poisson manifolds, momentum maps and their use for the reduction of Hamiltonian systems. It should be accessible to readers with a general knowledge of basic notions in differential geometry. Full proofs of many results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In plane Euclidean geometry, the power of a point \(O\) with respect to a circle \(\mathcal C\) is the real number \(\overrightarrow{OA}.\overrightarrow{OB}\), where \(A\) and \(B\) are the two intersection points of \(\mathcal C\) with a straight line \(\mathcal D\) through \(O\). That number does not depend on \(\mathcal D\) and is equal to \(\Vert \overrightarrow{OC}\Vert ^2-{\mathcal R}^2\), where \(C\) is the centre and \(\mathcal R\) the radius of \(\mathcal C\).

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978)

    Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1978)

    Book  MATH  Google Scholar 

  3. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    MATH  Google Scholar 

  4. Iglesias, P.: Symétries et Moment. Hermann, Paris (2000)

    Google Scholar 

  5. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures. Springer, Berlin (2013)

    Book  Google Scholar 

  6. Kosmann-Schwarzbach, Y.: (éditrice), Siméon-Denis Poisson, les mathématiques au service de la science. Éditions de l’École polytechnique, Palaiseau (2013)

    Google Scholar 

  7. Vaisman, I.: Lectures on the Geometry of Poisson manifolds. Birkhäuser, Basel Boston Berlin (1994)

    Book  MATH  Google Scholar 

  8. Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tulczyjew, W.M.: Geometric Formulations of Physical Theories. Monographs and Textbooks in Physical Science. Bibliopolis, Napoli (1989)

    Google Scholar 

  10. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer graduate School of Science, Yeshiva University, New York (1964)

    Google Scholar 

  12. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom. 12, 253–300 (1977)

    MATH  MathSciNet  Google Scholar 

  13. Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. Journal de Mathématiques Pures et Appliquées 57, 453–488 (1979)

    MathSciNet  Google Scholar 

  14. Kirillov, A.: Local Lie algebras. Russ. Math. Surv. 31, 55–75 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18, 523–557 (1983)

    Google Scholar 

  16. Weinstein, A.: Addendum to the local structure of Poisson manifolds. J. Differ. Geom. 22, 255 (1985)

    Google Scholar 

  17. Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. D. Reidel Publishing Company, Dordrecht (1987)

    Book  MATH  Google Scholar 

  18. Koszul, J.L.: Crochet de Schouten-Nijenhuis et cohomologie, in É. Cartan et les mathématiques d’aujourd’hui, Astérisque numéro hors série, pp. 257–271 (1985)

    Google Scholar 

  19. Marle C.-M., Calculus on Lie algebroids, Lie groupoids and Poisson manifolds, Dissertationes Mathematicae 457 Warszawa (2008) 1–57.

    Google Scholar 

  20. Libermann P.: Sous-variétés et feuilletages symplectiquement réguliers. In: Crumeyrolle, A., Grifone, J. (eds.) Symplectic Geometry, pp. 81–106. Pitman, London (1983)

    Google Scholar 

  21. Kirillov, A.: Éléments de la théorie des représentations. Éditions Mir, Moscou (1974)

    Google Scholar 

  22. Kostant, B.: Quantization and Unitary Representations, part 1. Prequantization, Lecture Notes in Mathematics, vol. 170, pp. 87–208 (1970)

    Google Scholar 

  23. Souriau, J.-M.: Structure des systèmes dynamiques. Dunod, Paris (1969)

    Google Scholar 

  24. Smale S.: Topology and mechanics, part I. Invent. Math. 10, 305–331 (1970)

    Google Scholar 

  25. Smale S.: Topology and mechanics, part II. Invent. Math. 11, 45–64 (1970)

    Google Scholar 

  26. Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Springer, New York (1994)

    Google Scholar 

  27. Kosmann-Schwarzbach, Y.: The Noether Theorems. Springer, New York (2011)

    Book  MATH  Google Scholar 

  28. Atiyah, M.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14, 1–15 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67, 491–513 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping II. Invent. Math. 77, 533–546 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kirwan, F.: Convexity properties of the moment map III. Invent. Math. 77, 547–552 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. Fr. 116, 315–339 (1988)

    MATH  MathSciNet  Google Scholar 

  33. Sniatycki, J., Tulczyjew, W.: Generating forms of Lagrangian submanifolds. Indiana Univ. Math. J. 22, 267–275 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  34. Meyer K., Symmetries and integrals in mechanics. In: Peixoto, M. (ed.) Dynamical Systems , pp. 259–273. Academic Press, New York (1973)

    Google Scholar 

  35. Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  36. Poincaré H., Sur une forme nouvelle des équations de la Mécanique. C. R. Acad. Sci. Paris CXXXII (7), 369–371 (1901)

    Google Scholar 

  37. Cendra, H., Holm, D., Marsden, J.E., Ratiu, T.: Lagrangian reduction, the Euler–Poincaré equations and semidirect products. Am. Math. Soc. Transl. 186, 1–25 (1998)

    MathSciNet  Google Scholar 

  38. Cendra H., Marsden J.E., Pekarsky S., Ratiu, T.: Variational principles for Lie-Poisson and Euler-Poincaré equations. Moscow Math. J. 3(3), 833–867 (2003)

    Google Scholar 

  39. Bott, R.: Nondegenerate critical manifolds. Ann. Math. 60, 248–261 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  41. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  42. Sternberg, S.: Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Natl. Acad. Sci. USA 74, 5453–5254 (1977)

    Article  MathSciNet  Google Scholar 

  43. Weinstein, A.: A universal phase space for particles in a Yang–Mills field. Lett. Math. Phys. 2, 417–420 (1978)

    Article  MATH  Google Scholar 

  44. Godbillon, C.: Géométrie différentielle et Mécanique analytique. Hermann, Paris (1969)

    Google Scholar 

  45. Marle, C.-M.: On Henri Poincaré’s note “Sur une forme nouvelle des équations de la Mécanique”. J. Geom. Symmetry Phys. 29, 1–38 (2013)

    MATH  MathSciNet  Google Scholar 

  46. Marle C.-M.: On mechanical systems with a Lie group as configuration space. In: de Gosson, M. (ed.) Jean Leray 99 Conference Proceedings: The Karlskrona Conference in the Honor of Jean Leray, pp. 183–203. Kluwer, Dordrecht (2003)

    Google Scholar 

  47. Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier Grenoble 16, 319–361 (1966)

    Article  Google Scholar 

  48. Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel-Boston-Berlin (1997)

    Book  MATH  Google Scholar 

  49. Kowalevski, S.: Sur le problème de la rotation d’un corps solide autour d’un point fixe. Acta Mathematica 12, 177–232 (1899)

    Article  MathSciNet  Google Scholar 

  50. Audin, M.: Spinning Tops, A Course on Integrable Systems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  51. Audin, M.: Souvenirs sur Sofia Kovalevskaya. Calvage et Mounet, Paris (2008)

    MATH  Google Scholar 

  52. Hamilton, W.R.: The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction. Proc. Roy. Irish Acad. 3, 287–294 (1846)

    Google Scholar 

  53. Bernoulli J.: Extrait de la réponse de M. Bernoulli à M. Herman, datée de Basle le 7 octobre 1710, Histoire de l’Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, (1710), pp. 521–533. http://gallica.bnf.fr/ark:/12148/bpt6k34901/f707.image.pagination

  54. Herman J.: Extrait d’une lettre de M. Herman à M. Bernoulli, datée de Padoüe le 12 juillet 1710, Histoire de l’Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, pp. 519–521, (1710). http://gallica.bnf.fr/ark:/12148/bpt6k34901/f709.image.pagination

  55. Marle, C.-M.: A property of conformally Hamiltonian vector fields; application to the Kepler problem. J. Geom. Mech. 4, 181–206 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  56. Cordani, B.: The Kepler Problem. Birkhäuser, Basel Boston Berlin (2003)

    Book  MATH  Google Scholar 

  57. Goodstein D., Goodstein J., Feynman R.: Feynman’s Lost Lecture. The Motion of Planets Around the Sun. W. W. Norton and Company Inc., New York (1996) (French translation: Cassini, Paris 2009)

    Google Scholar 

  58. Guichardet, A.: Le problème de Kepler; histoire et théorie. Éditions de l’École Polytechnique, Paris (2012)

    MATH  Google Scholar 

  59. Guillemin V., Sternberg, S.: Variations on a Theme by Kepler, vol. 42. American mathematical society colloquium publications, Providence, RI (1990)

    Google Scholar 

  60. Fock V. A.: Zur Theorie des Wasserstoffatoms. Zeitschrift für Physik 98, 145–154 (1935)

    Google Scholar 

  61. Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. 23, 609–636 (1970)

    Article  MATH  Google Scholar 

  62. Györgyi G.: Kepler’s equation, Fock variables, Bacry’s generators and Dirac brackets, part I. Il Nuovo Cimento 53, 717–736 (1968)

    Google Scholar 

  63. Györgyi G.: Kepler’s equation, Fock variables, Bacry’s generators and Dirac brackets, part II. Il Nuovo Cimento 62, 449–474 (1969)

    Google Scholar 

  64. Anosov, D.V.: A note on the Kepler problem. J. Dyn. Control Syst. 8, 413–442 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  65. Milnor, J.: On the geometry of the Kepler problem. Am. Math. Monthly 90, 353–365 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  66. Ligon, T., Schaaf, M.: On the global symmetry of the classical Kepler problem. Rep. Math. Phys. 9, 281–300 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  67. Cushman, R., Duistermaat, J.J.: A characterization of the Ligon-Schaaf regularization map. Commun. Pure Appl. Math. 50, 773–787 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  68. Heckman G., de Laat T.: On the regularization of the Kepler problem, preprint. arXiv: 1007.3695

  69. Souriau, J.-M.: Géométrie globale du problème à deux corps. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 117, 369–418 (1983)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

I address my thanks to Ivaïlo Mladenov for his kind invitation to present lectures at the International Conference on Geometry, Integrability and Quantization held in Varna in June 2013. For their moral support and many stimulating scientific discussions, I thank my colleagues and friends Alain Albouy, Marc Chaperon, Alain Chenciner, Maylis Irigoyen, Jean-Pierre Marco, Laurent Lazzarini, Fani Petalidou, Géry de Saxcé, Wlodzimierz Tulczyjew, Paweł Urbański, Claude Vallée and Alan Weinstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Michel Marle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marle, CM. (2014). Symmetries of Hamiltonian Systems on Symplectic and Poisson Manifolds. In: Ganghoffer, JF., Mladenov, I. (eds) Similarity and Symmetry Methods. Lecture Notes in Applied and Computational Mechanics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-08296-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08296-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08295-0

  • Online ISBN: 978-3-319-08296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics