Skip to main content

Some Recent Developments in Finding Systematically Conservation Laws and Nonlocal Symmetries for Partial Differential Equations

  • Chapter
  • First Online:
Similarity and Symmetry Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 73))

  • 1109 Accesses

Abstract

This chapter presents recent developments in finding systematically conservation laws and nonlocal symmetries for partial differential equations. There is a review of local symmetries, including Lie’s algorithm to find local symmetries in evolutionary form and their applications. The Direct Method for finding local conservation laws is reviewed and its relationship to and extension of Noether’s theorem are discussed. Moreover, it is shown how symmetries, including discrete symmetries may yield additional conservation laws from known conservation laws. Systematic procedures are presented to seek nonlocally related PDE systems for a given PDE system with two independent variables. In particular, these procedures include the use of conservation laws, point symmetries, and subsystems (including subsystems arising after appropriate invertible transformations of variables) to obtain trees of equivalent nonlocally related PDE systems. In turn, it is shown how the calculation of point symmetries of such nonlocally related systems leads to the discovery of nonlocal symmetries for a given PDE system. The situation of systematically constructing useful nonlocally related systems in multidimensions is considered. Many illustrative examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  2. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  3. Kumei, S., Bluman, G.W.: When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 42, 1157–1173 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bluman, G.W., Kumei, S.: Symmetry-based algorithms to relate partial differential equations. I. Local symmetries. EJAM 1, 189–216 (1990)

    MATH  MathSciNet  Google Scholar 

  5. Noether, E.: Invariante Variationsprobleme. Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys., 235–257 (1918)

    Google Scholar 

  6. Anderson, R.L., Kumei, S., Wulfman, C.E.: Generalization of the concept of invariance of differential equations. Phys. Rev. Lett. 28, 988–991 (1972)

    Article  MathSciNet  Google Scholar 

  7. Anderson, R.L., Ibragimov, N.H.: Lie-Bäcklund Transformations in Applications. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  8. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  MATH  Google Scholar 

  9. Anco, S.C., Bluman, G.W.: Direct construction of conservation laws from field equations. Phys. Rev. Lett. 78, 2869–2873 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications. EJAM 13, 545–566 (2002)

    Google Scholar 

  11. Anco, S.C., Bluman, G.W.: Direct construction method for conservation laws of partial differential equations. Part II: general treatment. EJAM 13, 567–585 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Bluman, G.W.: Construction of solutions to partial differential equations by the use of transformation groups. Ph.D. Thesis, California Institute of Technology, Pasadena, CA (1967)

    Google Scholar 

  13. Bluman, G.W., Cole, J.D.: General similarity solution of the heat equation. J. Math. Mech. 18, 1025–1042 (1969)

    MATH  MathSciNet  Google Scholar 

  14. Hereman, W.: Review of symbolic software for lie symmetry analysis. Math. Comput. Model. 25, 115–132

    Google Scholar 

  15. Wolf, T.: Investigating differential equations with CRACK, LiePDE, applsymm and ConLaw. In: Grabmeier, J., Kaltofen, E., Weispfenning. (eds.) Handbook of Computer Algebra, Foundations, Applications, Systems, vol. 37, pp. 465–468. Springer, New York (2002)

    Google Scholar 

  16. Wolf, T.: A comparison of four approaches to the calculation of conservation laws. EJAM 13, 129–152 (2002)

    MATH  Google Scholar 

  17. Cheviakov, A.F.: GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176, 48–61 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cheviakov, A.F.: “GeM”: a maple module for symmetry and conservation law computation for PDEs/ODEs. http://www.math.usask.ca/cheviakov/gem/ (2013)

  19. Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Konopolchenko, B.G., Mokhnachev, V.G.: On the group theoretical analysis of differential equations. J. Phys. A13, 3113–3124 (1980)

    Google Scholar 

  21. Kumei, S.: A group analysis of nonlinear differential equations. Ph.D. Thesis, University of British Columbia, Vancouver, BC (1981)

    Google Scholar 

  22. Kapcov, O.V.: Extension of the symmetry of evolution equations. Sov. Math. Dokl. 25, 173–176 (1982)

    Google Scholar 

  23. Pukhnachev, V.V.: Equivalence transformations and hidden symmetry of evolution equations. Sov. Math. Dokl. 35, 555–558 (1987)

    MATH  Google Scholar 

  24. Bluman, G.W., Temuerchaolu, Anco, S.C.: New conservation laws obtained directly from symmetry action on a known conservation law. JMAA 322, 233–250 (2006)

    Google Scholar 

  25. Bluman, G.W., Kumei, S.: On invariance properties of the wave equation. J. Math. Phys. 28, 307–318 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bluman, G.W., Kumei, S., Reid, G.J.: New classes of symmetries of partial differential equations. J. Math. Phys. 29, 806–811; Erratum. J. Math. Phys. 29, 2320 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  28. Yang, Z.: Nonlocally related partial differential equation systems, the nonclassical method and applications. Ph.D Thesis, University of British Columbia, Vancouver, BC (2013)

    Google Scholar 

  29. Bluman, G.W., Yang, Z.: A symmetry-based method for constructing nonlocally related PDE systems. J. Math. Phys. 54, 093504 (2013)

    Article  MathSciNet  Google Scholar 

  30. Bluman, G.W., Cheviakov, A.F.: Framework for potential systems and nonlocal symmetries: algorithmic approach. J. Math. Phys. 46, 123506 (2005)

    Article  MathSciNet  Google Scholar 

  31. Bluman, G.W., Cheviakov, A.F., Ivanova, N.M.: Framework for nonlocally related partial differential equations systems and nonlocal symmetries: extension, simplification, and examples. J. Math. Phys. 47, 113505 (2006)

    Article  MathSciNet  Google Scholar 

  32. Anco, S.C., Bluman, G.W.: Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations. J. Math. Phys. 38, 3508–3532 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Anco, S.C., The, D.: Symmetries, conservation laws, and cohomology of Maxwell’s equations using potentials. Acta Appl. Math. 89, 1–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Bluman, G.W., Cheviakov, A.F., Ganghoffer, J.-F.: Nonlocally related PDE systems for one-dimensional nonlinear elastodynamics. J. Eng. Math. 62, 203–221 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bluman, G.W., Cheviakov, A.F., Ganghoffer, J.-F.: On the nonlocal symmetries, group invariant solutions and conservation laws of the equations of nonlinear dynamical compressible elasticity. In: Proceedings of IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics, pp. 107–120. Springer, New York (2009)

    Google Scholar 

  36. Bluman, G.W., Kumei, S.: Symmetry-based algorithms to relate partial differential equations. II. Linearization by nonlocal symmetries. EJAM 1, 217–223 (1990)

    MATH  MathSciNet  Google Scholar 

  37. Bluman, G.W., Shtelen, V.M.: New classes of Schroedinger equations equivalent to the free particle equation through non-local transformations. J. Phys. A29, 4473–4480 (1996)

    MathSciNet  Google Scholar 

  38. Bluman, G.W., Shtelen, V.M.: Nonlocal transformations of Kolmogorov equations into the backward heat equation. JMAA 291, 419–437 (2004)

    MATH  MathSciNet  Google Scholar 

  39. Bluman, G.W.: On the transformation of diffusion processes into the Wiener process. SIAM J. Appl. Math. 39, 238–247 (1980)

    Article  MathSciNet  Google Scholar 

  40. Bluman, G.W.: On mapping linear partial differential equations to constant coefficient equations. SIAM J. Appl. Math. 43, 1259–1273 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bluman, G.W.: Temuerchaolu: Conservation laws for nonlinear telegraph equations. JMAA 310, 459–476 (2005)

    MATH  MathSciNet  Google Scholar 

  42. Volterra, V.: Leçons sur les Functions de Lignes. Gauthier-Villars, Paris (1913)

    Google Scholar 

  43. Vainberg, M.M.: Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco (1964)

    MATH  Google Scholar 

  44. Ames, W.F., Lohner, R.J., Adams, E.: Group properties of \({u_{tt}} = {[f(u){u_x}]_x}\). Int. J. Nonlinear Mech. 16, 439–447 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ma, A.: Extended group analysis of the wave equation. M.Sc. Thesis, University of British Columbia, Vancouver, BC (1991)

    Google Scholar 

  46. Bluman, G.W., Cheviakov, A.F.: Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. JMAA 333, 93–111 (2007)

    MATH  MathSciNet  Google Scholar 

  47. Bluman, G.W.: Temuerchaolu: Comparing symmetries and conservation laws of nonlinear telegraph equations. J. Math. Phys. 46, 073513 (2005)

    Article  MathSciNet  Google Scholar 

  48. Bluman, G.W.: Temuerchaolu, Sahadevan, R.: Local and nonlocal symmetries for nonlinear telegraph equations. J. Math. Phys. 46, 023505 (2005)

    Article  MathSciNet  Google Scholar 

  49. Akhatov, I.S., Gazizov, R.K., Ibragimov, N.H.: Nonlocal symmetries. Heuristic approach. J. Sov. Math. 55, 1401–1450 (1991)

    Google Scholar 

  50. Cheviakov, A.F., Bluman, G.W.: Multidimensional partial differential equation systems: generating new systems via conservation laws, potentials, gauges, subsystems. J. Math. Phys. 51, 103521 (2010)

    Article  MathSciNet  Google Scholar 

  51. Cheviakov, A.F., Bluman, G.W.: Multidimensional partial differential equation systems: nonlocal symmetries, nonlocal conservation laws, exact solutions. J. Math. Phys. 51, 103522 (2010)

    Article  MathSciNet  Google Scholar 

  52. Bluman, G.W., Ganghoffer, J.-F.: Connecting Euler and Lagrange systems as nonlocally related systems of dynamical nonlinear elasticity. Arch. Mech. 63, 363–382 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Bluman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bluman, G., Yang, Z. (2014). Some Recent Developments in Finding Systematically Conservation Laws and Nonlocal Symmetries for Partial Differential Equations. In: Ganghoffer, JF., Mladenov, I. (eds) Similarity and Symmetry Methods. Lecture Notes in Applied and Computational Mechanics, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-319-08296-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08296-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08295-0

  • Online ISBN: 978-3-319-08296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics