Skip to main content

Theoretical Background

  • Chapter
  • First Online:
  • 711 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

In this chapter, the theoretical background is presented covering design and construction of AG codes for the encoder and decoder along with important parameters. We also present a block diagram of the modified Sakata’s algorithm for the first time. It shows how the construction of AG codes using Hermitian codes is performed using a hard-input hard-output (HIHO) decoding algorithm. Fundamentals of TCs encoder, decoder and interleaver design are shown. Examples of the construction of BTCs are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goppa VD (1981) Codes on algebraic curves. Soviet Math Dokl 24:75–91

    Google Scholar 

  2. Ozbudak F, Stichtenoth H (1999) Constructing codes from algebraic curves. IEEE Trans Inf Theory 45(7):2502–2505. doi:10.1109/18.796391

    Article  MathSciNet  Google Scholar 

  3. Tsfasman MA, Vladut SG, Zink T (1982) Modular curves, shimura curves and goppa codes, better than Varshamov-Gilbert bound. Math Nachtrichten 109:21–28

    Article  MATH  MathSciNet  Google Scholar 

  4. Justesen J, Larsen K, Jensen H, Havemose A, Hoholdt T (1989) Construction and decoding of a class of algebraic geometry codes. IEEE Trans Inf Theory 35(4):811–821. doi:10.1109/18.32157

    Article  MATH  MathSciNet  Google Scholar 

  5. Carrasco RA, Johnston M (2008) Non-binary error control coding for wireless communication and data storage. Wiley, New York. doi:10.1002/9780470740415.fmatter. http://dx.doi.org/10.1002/9780470740415.fmatter

  6. Kirwan F (1992) Complex algebraic curves. London mathematical society student texts, vol. 23. Cambridge University Press, Cambridge. doi:10.2277/0521423538

  7. Walker RJ (1978) Algebraic curves. Princeton mathematical series, vol. 13. Springer-Verlag, New York

    Google Scholar 

  8. Johnston M, Carrasco RA (2005) Construction and performance of algebraic-geometric codes over awgn and fading channels. IEE Proc Commun 152(5):713–722. doi:10.1049/ip-com:20045153

    Article  Google Scholar 

  9. Blake I, Heegard C, Hoholdt T, Wei V (1998) Algebraic-geometry codes. IEEE Trans Inf Theory 44(6):2596–2618. doi:10.1109/18.720550

    Article  MATH  MathSciNet  Google Scholar 

  10. Pretzel O (1998) Codes and algebraic curves. Oxford University Press, New York

    MATH  Google Scholar 

  11. Wicker SB (1995) Error control systems for digital communication and storage. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  12. Sakata S (1988) Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J Symbolic Comput 5(3):321–337. doi:10.1016/S0747-7171(88)80033-6. http://www.sciencedirect.com/science/article/pii/S0747717188800336

  13. Atkinson K (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York. http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471624896

  14. Reed IS, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Ind Appl Math 8(2):300–304

    Article  MATH  MathSciNet  Google Scholar 

  15. Massey J (1969) Shift-register synthesis and bch decoding. IEEE Trans Inf Theory 15(1):122–127. doi:10.1109/TIT.1969.1054260

    Article  MATH  MathSciNet  Google Scholar 

  16. Justesen J, Larsen K, Jensen H, Hoholdt T (1992) Fast decoding of codes from algebraic plane curves. IEEE Trans Inf Theory 38(1):111–119. doi:10.1109/18.108255

    Article  MATH  MathSciNet  Google Scholar 

  17. Sakata S, Justesen J, Madelung Y, Jensen H, Hoholdt T (1995) Fast decoding of algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inf Theory 41(6):1672–1677. doi:10.1109/18.476240

    Article  MATH  MathSciNet  Google Scholar 

  18. Saints K, Heegard C (1995) Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Grobner bases. IEEE Trans Inf Theory 41(6):1733–1751. doi:10.1109/18.476246

    Article  MATH  MathSciNet  Google Scholar 

  19. Feng GL, Rao TRN (1993) Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inf Theory 39(1):37–45. doi:10.1109/18.179340

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu CW (1999) Determination of error values for decoding Hermitian codes with the inverse affine Fourier transform. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2302–2305. http://ci.nii.ac.jp/naid/110003208168/en/

  21. Berrou C, Glavieux A, Thitimajshima P (1993) Near shannon limit error-correcting coding and decoding: turbo-codes. 1. In: IEEE International Conference on Communications (ICC’93), vol. 2. pp. 1064–1070. doi: 10.1109/ICC.1993.397441

  22. Berrou C, Glavieux A (1996) Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans Commun 44(10):1261–1271. doi:10.1109/26.539767

    Article  Google Scholar 

  23. Sklar B (1988) Digital communications: fundamentals and applications. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  24. Valenti MC (1998) Turbo codes and iterative processing. In: Proceedings IEEE New Zealand Wireless Communications Symposium, pp. 216–219

    Google Scholar 

  25. Vucetic B, Yuan J (2000) Turbo codes: principles and applications. Kluwer Academic, Boston. http://www.loc.gov/catdir/enhancements/fy0820/00033104-t.html

  26. Benedetto S, Montorsi G (1996) Unveiling turbo codes: some results on parallel concatenated coding schemes. IEEE Trans Inf Theory 42(2):409–428. doi:10.1109/18.485713

    Article  MATH  Google Scholar 

  27. Pyndiah R, Glavieux A, Picart A, Jacq S (1994) Near optimum decoding of product codes. In: Proceedings of IEEE GLOBECOM ’94, pp. 339–343. doi: 10.1109/GLOCOM.1994.513494

  28. Pyndiah RM (1998) Near-optimum decoding of product codes: block turbo codes. IEEE Trans Commun 46(8):1003–1010. doi:10.1109/26.705396

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar A. Alzubi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Alzubi, J.A., Alzubi, O.A., Chen, T.M. (2014). Theoretical Background. In: Forward Error Correction Based On Algebraic-Geometric Theory. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-08293-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08293-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08292-9

  • Online ISBN: 978-3-319-08293-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics