Skip to main content

Constrained Motion of Mechanical Systems and Tracking Control of Nonlinear Systems

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 93))

Abstract

This paper aims to expose the interrelations and connections between constrained motion of mechanical systems and tracking control of nonlinear mechanical systems. The interrelations between the imposition of constraints on a mechanical system and the trajectory requirements for tracking control are exposed through the use of a simple example. It is shown that given a set of constraints, d’Alembert’s principle corresponds to the problem of finding the optimal tracking control of a mechanical system for a specific control cost function that Nature seems to choose. Furthermore, the general equations for constrained motion of mechanical systems that do not obey d’Alembert’s principle yield, through this duality, the entire set of continuous controllers that permit exact tracking of the trajectory requirements. The way Nature seems to handle the tracking control problem of highly nonlinear systems suggests ways in which we can develop new control methods that do not make any approximations and/or linearizations related to the nonlinear system dynamics or its controllers. More general control costs are used and Nature’s approach is thereby extended to general control problems. A simple, unified methodology for modeling and control of mechanical systems emerges. Examples drawn from diverse areas of control are provided dealing with synchronization of multiple nonlinear gyroscopes, design of optimal Lyapunov stable controllers for nonautonomous nonlinear systems, and energy control of nonhomogeneous Toda chains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Appell, P.: Su rune Forme Generale des Equations de la Dynamique. C. R. Acad. Sci. Paris 129, 459–460 (1899)

    MATH  Google Scholar 

  2. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. Trans. ASME 58(6), 389–411 (2005)

    Article  Google Scholar 

  3. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic oscillators. Phys. Rep. 366, 1–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dirac, P.A.M.: Lecture on Quantum Mechanics. Yeshiva University Press, New York (1964)

    Google Scholar 

  5. Gauss, C.F.: Uber ein neues allgemeines grundgesetz der mechanik. J. Reine Angew. Mathematik 4, 232–235 (1829)

    Article  MATH  Google Scholar 

  6. Gibbs, J.W.: On the fundamental formulae of dynamics. Am. J. Math. 2, 49–64 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1976)

    Google Scholar 

  8. Jacobi, C.G.J.: Vorlesung uber Dynamik. G. Reimer, Berlin (1884)

    Google Scholar 

  9. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  10. Lagrange, JL.: Mechanique Analytique. Mme Ve Coureier, Paris, France (1811)

    Google Scholar 

  11. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  12. Newton, I.: Mathematical Principles of Natural Philosophy, Vol. 1, Motte’s translation of F. Cajori, University of California Press, Berkeley (1962)

    Google Scholar 

  13. Pars, L.A.: A Treatise on Analytical Dynamics. Oxbow Press, Woodbridge (1972)

    Google Scholar 

  14. Penrose, R.: A generalized inverse of matrices. Proc. Cambridge Phil. Soc. 51, 406–413 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peters, J., Mistry, M., Udwadia, F.E., Nakanishi, J., Schaal, S.: A Unifying framework for robot control with redundant DOFs. Auton. Rob. 24, 1–12 (2008)

    Article  Google Scholar 

  16. Poincare, H.: Su une Forme Nouvelle des Equations de la Mechanique. C. R. Acad. Sci. Paris 132, 369–371 (1901)

    MATH  Google Scholar 

  17. Pyras, K.: Weak and strong synchronization of chaos. Phys. Rev. E 54, 4508–4511 (1996)

    Article  Google Scholar 

  18. Rulkov, N., Sushchik, M., Tsimring, L., Abarbanel, H.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. 51, 980–994 (1995)

    Google Scholar 

  19. Toda, M.: Theory of Nonlinear Lattices. Springer, New York (1989)

    Book  MATH  Google Scholar 

  20. Udwadia, F.E.: A New perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. Ser. A 459, 1783–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. Ser. A 464, 2341–2363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Udwadia, F.E., Han, B.: Synchronization of multiple chaotic gyroscopes using the fundamental equation of mechanics. J. Appl. Mech. 2011, 75(2), 021011-1–021011-10 (2008)

    Google Scholar 

  23. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A 439, 407–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  25. Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems? J. Appl. Mech. 69, 335–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Udwadia, F.E., von Bremen, H.: An efficient and stable approach for computation of Lyapunov characteristic exponents of continuous dynamical systems. Appl. Math. Comput. 121, 219–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firdaus E. Udwadia .

Editor information

Editors and Affiliations

Appendix

Appendix

We shall call the column 3-vector q = [x, y, z]T. The plant we want to control corresponds to the unconstrained system (see Table 2) whose equation of motion is given in Eq. (2) as

$$ M\;\ddot{q}(t):=\left[\begin{array}{ccc} m & 0& 0\\ 0 & m& 0\\ 0& 0 & m\end{array}\right]\kern0.5em \left[\begin{array}{l}\ddot{x}\\ \ddot{y}\\ \ddot{z}\end{array}\right]=\left[\begin{array}{l}0\\ m g\!\left( x, y, z, t\right)\\ 0\end{array}\right]:= Q $$
(62)

The trajectory requirement (constraint) is

$$ \varphi\!\left( x, y, z, t\right):={x}^2(t)+{y}^2(t)+{z}^2(t)-{L}^2= q{(t)}^T q(t)-{L}^2=0, $$
(63)

and since we may not start on this manifold initially, we consider instead the constraint

$$ \ddot{\varphi}+ c\dot{\varphi}+ k\varphi =0, c>0, k>0 $$
(64)

whose solution as t → ∞ is φ = 0. Thus we get asymptotic convergence to the trajectory requirement given in Eq. (63). Differentiating the constraint (63), Eq. (64) can be rewritten as

$$ A\ddot{q}=\left[ x\kern0.75em y\kern0.75em z\right]\left[\begin{array}{l}\ddot{x}\\ \ddot{y}\\ \ddot{z}\end{array}\right]=-{\dot{q}}^T\dot{q}- c{\dot{q}}^T q-\left( k/2\right)\left({q}^T q-{L}^2\right):= b $$
(65)

so that A = [x y z] and \( b=-{\dot{q}}^T\dot{q}- c{\dot{q}}^T q- k\left({q}^T q-{L}^2\right)/2 \). The control force Q C that minimizes at each instant of time the control cost

$$ J(t)={\left[{Q}^C\right]}^T N{Q}^C $$
(66)

where N is a user-specified positive definite 3 by 3 matrix is given by Eq. (21) as

$$ \begin{array}{l}{Q}^C{=}-{N}^{-1}\left[\begin{array}{l} x/ m\\ y/ m\\ z/ m\end{array}\right]{\left[ A{(MNM)}^{-1}{A}^T\right]}^{+}\left\{ gy{+}{\dot{q}}^T\dot{q}{+} c{\dot{q}}^T q{+}\frac{k}{2}\right({q}^T q-{L}^2\left)\right\}\\ [2pc] {}\kern1.25em =-\frac{m{N}^{-1}}{\left( A{N}^{-1}{A}^T\right)}\left[\begin{array}{l} x\\ y\\ z\end{array}\right]\left\{ gy+{\dot{q}}^T\dot{q}+ c{\dot{q}}^T q+\frac{k}{2}\left({q}^T q-{L}^2\right)\right\}.\end{array} $$
(67)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Udwadia, F.E., Mylapilli, H. (2014). Constrained Motion of Mechanical Systems and Tracking Control of Nonlinear Systems. In: Awrejcewicz, J. (eds) Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-08266-0_16

Download citation

Publish with us

Policies and ethics