Skip to main content

Diversities in the Inverse Dynamics Problem for Underactuated Mechanical Systems Subject to Servo-constraints

  • Conference paper
  • First Online:
Applied Non-Linear Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 93))

  • 2619 Accesses

Abstract

Underactuated mechanical systems are featured with less control inputs than degrees of freedom. Their performance goal may then be realization of specified in time outputs whose number coincides the number of inputs. A solution to the inverse simulation problem (servo-constraint problem), that is, determination of an input control strategy that forces the underactuated system to complete the partly specified motion, is a challenging task. Since systems may be “underactuated” in several ways and the servo-constraint realization may range from orthogonal to tangential, diverse formulations and analysis methods of the servo-constraint problem arise. The diversity is discussed with reference to some simple case studies. The governing equations are handled in two ways. A direct formulation in configuration coordinates is first motivated and is then compared to a setting in which the actuated coordinates are replaced with the outputs. The governing equations arise either as ODEs (ordinary differential equations) or DAEs (differential-algebraic equations). Some computational issues related to the ODE and DAE formulations are discussed, and simulation results for the sample case studies are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Contr. 9, 863–908 (2003)

    Article  MATH  Google Scholar 

  2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  3. Benosman, M., Le Vey, G.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004)

    Article  Google Scholar 

  4. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. Z. Angew. Math. Mech. 81, 247–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11, 343–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blajer, W., Kołodziejczyk, K.: Control of underactuated mechanical systems with servo-constraints. Nonlinear Dyn. 50, 781–791 (2007)

    Article  MATH  Google Scholar 

  7. Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25, 131–143 (2011)

    Article  Google Scholar 

  8. Blajer, W., Graffstein, J., Krawczyk, M.: Modeling of aircraft prescribed trajectory flight as an inverse simulation problem. In: Awrejcewicz, J. (ed.) Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, pp. 153–162. Springer, Netherlands (2009)

    Chapter  Google Scholar 

  9. Blajer, W., Seifried, R., Kołodziejczyk, K.: Diversity of servo-constraint problems for underactuated mechanical systems: a case study illustration. Solid State Phenom. 198, 473–482 (2013)

    Article  Google Scholar 

  10. Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math. 72, 173–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y.-H.: Equations of motion of mechanical systems under servoconstraints: the Maggi approach. Mechatronics 18, 208–217 (2008)

    Article  Google Scholar 

  12. De Luca, A.: Trajectory control of flexible manipulators. In: Siciliano, B., Valavanis, K.P. (eds.) Control Problems in Robotics and Automation, pp. 83–104. Springer, London (1998)

    Chapter  Google Scholar 

  13. Fantoni, I., Lozano, R.: Non-linear Control for Underactuated Mechanical Systems. Springer, London (2002)

    Book  Google Scholar 

  14. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61, 1327–1361 (1995)

    Article  MATH  Google Scholar 

  15. Kirgetov, V.I.: The motion of controlled mechanical systems with prescribed constraints (servoconstraints). J. Appl. Math. Mech. USS 31, 433–466 (1967)

    MathSciNet  MATH  Google Scholar 

  16. Lee, H.-H.: Modeling and control of a three-dimensional overhead crane. J Dyn. Syst. Meas. Control T ASME 120, 471–476 (1998)

    Article  Google Scholar 

  17. Paul, R.P.: Robot Manipulators: Mathematics, Programming, and Control. MIT, Cambridge, MA (1981)

    Google Scholar 

  18. Rouchon, P.: Flatness based control of oscillators. Z. Angew. Math. Mech. 85, 411–421 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sahinkaya, M.N.: Inverse dynamic analysis of multiphysics systems. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 218, 13–26 (2004)

    Google Scholar 

  20. Sara-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems. Marcel Dekker, New York (2004)

    Google Scholar 

  21. Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67, 1539–1557 (2012)

    Article  MathSciNet  Google Scholar 

  22. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27, 75–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4, 113–129 (2013)

    Article  Google Scholar 

  24. Spong, M.W.: Underactuated mechanical systems. In: Siciliano, B., Valavanis, K.P. (eds.) Control Problems in Robotics and Automation, pp. 135–150. Springer, London (1998)

    Chapter  Google Scholar 

  25. Thompson, D., Bradley, R.: Inverse simulation as a tool for flight dynamics research: principles and applications. Progr. Aero. Sci. 42, 174–210 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Blajer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Blajer, W. (2014). Diversities in the Inverse Dynamics Problem for Underactuated Mechanical Systems Subject to Servo-constraints. In: Awrejcewicz, J. (eds) Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-08266-0_14

Download citation

Publish with us

Policies and ethics