On Semilinear Hyperbolic Functional Equations with State-Dependent Delays

  • László SimonEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 94)


We consider second-order semilinear hyperbolic functional differential equations where the lower-order terms contain functional dependence and state-dependent delay on the unknown function. Existence of solutions for t ∈ (0, T), t ∈ (0, ) and some qualitative properties of the solutions in (0, ) are shown. Further, examples are considered.


Semilinear hyperbolic equation Functional differential equation  State-dependent delay Qualitative properties 



This work was supported by the Hungarian National Foundation for Scientific Research under grant OTKA K 81403.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Berkovits, J., Mustonen, V.: Topological degreee for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems. Rend. Mat. Ser. VII 12(Roma), 597–621 (1992)Google Scholar
  3. 3.
    Czernous, W.: Global solutions of semilinear first order partial functional differential equations with mixed conditions. Funct. Differ. Equ. 18, 135–154 (2011)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Giorgi, C., Munoz Rivera, J.E., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Guezane-Lakoud, A., Chaoui, A.: Roethe method applied to semilinear hyperbolic integro-differential equation with integral conditions. Int. J. Open Probl. Comput. Sci. Math. 4(1), 1–14 (2011)MathSciNetGoogle Scholar
  6. 6.
    Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1977)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lions, J.L.: Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires. Dunod Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  8. 8.
    Simon, L.: On nonlinear hyperbolic functional differential equations. Math. Nachr. 217, 175–186 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Simon, L.: Application of monotone type operators to parabolic and functional parabolic PDE’s. In: Handbook of Differential Equations. Evolutionary Equations, vol. 4, pp. 267–321. Elsevier, Amsterdam (2008)Google Scholar
  10. 10.
    Simon, L.: Nonlinear second order evolution equations with state-dependent delays. Electron J. Qual. Theory Differ. Equ. Proceedings of 9th Colloquium on the Qualitative Theory of Differential Equations, Szeged, vol. 14, pp. 1–12 (2012)Google Scholar
  11. 11.
    Simon, L.: Semilinear Hyperbolic Functional Equations. Banach Center Publications 101, 205–222 (2014)CrossRefGoogle Scholar
  12. 12.
    Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications II A and II B. Springer, New York (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied Analysis and Computational MathematicsEötvös Loránd UniversityBudapestHungary

Personalised recommendations