Bituminous Binders and Mixtures

  • José NevesEmail author
  • António Correia Diogo
  • Luís de Picado Santos


The subject of this chapter is to present materials for construction and civil engineering that incorporate bitumen and bituminous binders in its composition to be used in waterproofing systems and pavements of transport infrastructures, e.g. roads and airfields. General properties of bitumen, bitumen binders and bitumen emulsions are described. Waterproofing systems and bituminous mixtures are the main materials regarding the use of bitumen and bituminous binders for main civil engineering purposes. In the case of bituminous mixtures, the composition, properties and main products and applications are presented in the perspective of their use in pavement layers. Surface treatments and other special products and applications are also included. The main technical requirements are related to the materials, techniques and equipments involved during the design, construction, maintenance, rehabilitation and recycling of these bituminous materials.


Asphalt Bitumen Bitumen emulsion Bituminous mixture Pavement Waterproofing system Surface treatment 


  1. 1.
    Boëda E et al (1996) Bitumen as a hafting material on Middle Palaeolithic artefacts. Nature 380:336–38CrossRefGoogle Scholar
  2. 2.
    Connan J (1999) Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philos Trans R Soc Lond B Biol Sci 354:33–50CrossRefGoogle Scholar
  3. 3.
    Read J, Whiteoak D (2003) (Shell Bitumen)—the Shell Bitumen handbook, 5th edn. Thomas Telford Publishing, TonbridgeGoogle Scholar
  4. 4.
    Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem 41:576–79CrossRefGoogle Scholar
  5. 5.
    Brooks C (1991) Initial results from thin layer chromatography in asphalt research. NRCA—3rd International Symposium on Roofing Technology, Gaithersburg, Maryland, USA, 99–105Google Scholar
  6. 6.
    Ecker A (2001) The application of iatroscan-technique for analysis of bitumen. Petrol Coal 43:51–53Google Scholar
  7. 7.
    Masson J-F et al (2001) Dynamics of bitumen fractions by thin-layer chromatography/flame ionization detection. Energy Fuel 15:955–60CrossRefGoogle Scholar
  8. 8.
    Fuhr BJ et al (2005) Comparison of bitumen fractionation methods. Energy Fuel 19:1327–29CrossRefGoogle Scholar
  9. 9.
    Merdrignac I, Espinosa D (2007) Physicochemical characterization of petroleum fractions: the state of the art. Oil Gas Sci Tech 62:7–32CrossRefGoogle Scholar
  10. 10.
    Wang S et al (2010) The development of a method for the qualitative and quantitative determination of petroleum hydrocarbon components using thin-layer chromatography with flame ionization detection. J Chromatogr A 1217:368–74CrossRefGoogle Scholar
  11. 11.
    Groenzin H, Mullins O (2001) Molecular size and structure of asphaltenes. Petrol Sci Tech 19:219–30CrossRefGoogle Scholar
  12. 12.
    Lu X et al (2005) Wax morphology in bitumen. J Mater Sci 40:1893–1900CrossRefGoogle Scholar
  13. 13.
    Pereira JC et al (2007) Resins: the molecules responsible for the stability/instability phenomena of asphaltenes. Energy Fuel 21:1317–1321CrossRefGoogle Scholar
  14. 14.
    Nellensteyn FI (1938) The colloidal structure of bitumen. Science of petroleum, vol 4. Oxford University Press, LondonGoogle Scholar
  15. 15.
    Pfeiffer JP, Saal RNJ (1940) Asphaltic bitumen as colloid system. J Am Chem Soc 44:139–149Google Scholar
  16. 16.
    Dickie JP, Yen TF (1967) Macrostructures of the asphaltic fractions by various instrumental methods. Anal Chem 39:1847–52CrossRefGoogle Scholar
  17. 17.
    Rostler FS, White RM (1959). Influence of chemical composition of asphalts on performance, particularly durability. ASTM Spec. Tech. Pub No. 227Google Scholar
  18. 18.
    Löber L et al (1998) Bitumen in colloid science: a chemical, structural and rheological approach. Fuel 77:1443–50CrossRefGoogle Scholar
  19. 19.
    Bonemazzi F, Giavarini C (1999) Shifting the bitumen from sol to gel. J Petrol Sci 22:17–24CrossRefGoogle Scholar
  20. 20.
    Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82CrossRefGoogle Scholar
  21. 21.
    Löber L et al (1996) New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J Microsc 182:32–39CrossRefGoogle Scholar
  22. 22.
    Jäger A et al (2004) Identification of microstructural components of bitumen by means of atomic force microscopy (AFM). Proc Appl Math Mech 4:400–1CrossRefGoogle Scholar
  23. 23.
    Masson J-F et al (2006) Bitumen morphologies by phase-detection atomic force microscopy. J Microsc 221:17–29CrossRefMathSciNetGoogle Scholar
  24. 24.
    Costa ER et al (2008) Bitumen morphology as observed by phase-detection atomic force microscopy. Mater Sci Forum 587–588:981–85CrossRefGoogle Scholar
  25. 25.
    Barbosa T et al (1998) Rheological characterization of asphalt bitumens modified with reactive polyurethanes. Les Cahiers de Rhéologie 16(1):527–32Google Scholar
  26. 26.
    Navarro FJ et al (2006) Rheology and microstructure of MDI-PEG reactive prepolymer-modified bitumen. Mech Time-Depend Mat 10:347–59CrossRefGoogle Scholar
  27. 27.
    Martín-Alfonso MJ et al (2009) Effect of processing temperature on the bitumen/MDI-PEG reactivity. Fuel Process Tech 90:525–30CrossRefGoogle Scholar
  28. 28.
    Lu X, Isacsson U (2002) Effect of ageing on bitumen chemistry and rheology. Construct Build Mater 16:15–22CrossRefGoogle Scholar
  29. 29.
    Sá da Costa M et al (2010) Chemical and thermal characterization of road bitumen aging. Mater Sci Forum 636–637:273–79CrossRefGoogle Scholar
  30. 30.
    PIARC (1999) Use of modified binders, binders with additives and special bitumens in road pavements. World Road Association, Routes and Roads, no. 303, pp 9–179Google Scholar
  31. 31.
    Aglan H, Lewandowski L, Little D (1996) Polymer modifiers for improved performance of asphalt mixtures. Basel, Technomic AGGoogle Scholar
  32. 32.
    Navarro FJ et al (2009) Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis. J Ind Eng Chem 15:458–464CrossRefGoogle Scholar
  33. 33.
    Technical Specifications. Pavements. Estradas de Portugal. Portuguese Road Administration, Portugal (2009) (in Portuguese)Google Scholar
  34. 34.
    APORBET (1998) Misturas betuminosas. Contribuição para a normalização do fabrico e da aplicação. Associação Portuguesa de Fabricantes de Misturas Betuminosas (in Portuguese)Google Scholar
  35. 35.
    Asphalt Institute and Eurobitume (2008) The bitumen industry—a global perspective. Production, chemistry, use, specification and occupational exposure, 1st edn. Asphalt Institute and Eurobitume, LexingtonGoogle Scholar
  36. 36.
    Bitumen Waterproofing Association (BWA), et al (2008) The Bitumen Roofing Industry—a global perspective. Production, use, properties, specifications and occupational exposure. ARMA, BWA, NRCA and RCMAGoogle Scholar
  37. 37.
    Pacheco AC (2010) Qualificação de betumes para a produção de membranas de impermeabilização, Dissertação de Mestrado, Instituto Superior Técnico, Universidade Técnica de LisboaGoogle Scholar
  38. 38.
    Union Europeenne pour l’Agrément Technique dans la Construction (UEAtc) (2001) Technical guide for the assessment of Roof Waterproofing Systems made of reinforced APP or SBS polymer modified bitumen sheets. UEAtc, ParisGoogle Scholar
  39. 39.
    Sengoz B, Isikyakar G (2008) Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J Hazard Mater 150:424–432CrossRefGoogle Scholar
  40. 40.
    Sengoz B, Isikyakar G (2008) Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construct Build Mater 22:1897–1905CrossRefGoogle Scholar
  41. 41.
    Branco F, Pereira P, Picado Santos L (2005) Pavimentos Rodoviários, Edições Almedina, Coimbra, Portugal (in Portuguese)Google Scholar
  42. 42.
    EAPA (2010) Position paper—the use of warm mix asphalt. European Asphalt Pavement Association, BrusselsGoogle Scholar
  43. 43.
    Capitão SD, Picado-Santos LG, Martinho F (2012) Pavement engineering materials: review on the use of warm-mix asphalt. Construct Build Mater 36:1016–1024, doi: 10.1016/j.conbuildmat.2012.06.038 CrossRefGoogle Scholar
  44. 44.
    PIARC (2003) Pavement recycling. PIARC Committee C7/8—“Road Pavements”, France, ISBN: 2-84060-154-0Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Neves
    • 1
    Email author
  • António Correia Diogo
    • 2
  • Luís de Picado Santos
    • 1
  1. 1.Department of Civil Engineering, Architecture and GeoresourcesInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
  2. 2.Department of Chemical EngineeringInstituto Superior Técnico, Universidade de LisboaLisbonPortugal

Personalised recommendations