Skip to main content

Autolocalization of Quantum Particles

  • Chapter
  • First Online:
Synergetics of Molecular Systems

Abstract

In this chapter we discuss the autolocalized state (soliton) dynamics of a quantum particle (intermolecular excitation) in a molecular chain. One of the central concepts in bioenergetics is the question of how the chemical energy released by the hydrolysis of adenosine triphosphate (ATP) transforms and transfers along the protein molecules, and over significant distances compared to the molecular scale. The difficulty in the physical explanation for this transfer is associated with the fact that the energy released by ATP hydrolysis, equal to 0.42 eV, is only 20 times higher than the average energy of thermal fluctuations under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, D.E.: Mechanism of energy transduction in biological systems. Science 181, 583 (1973)

    ADS  Google Scholar 

  2. Davydov, A.S., Kislukha, N.I.: Solitary excitations in one-dimensional molecular chains. Phys. Stat. Sol. (b) 59, 465 (1973)

    Google Scholar 

  3. Davydov, A.S.: Theory of Molecular Excitons. Pergamon Press, New York (1970)

    Google Scholar 

  4. Agranovich, V.M.: Theory of Excitons. Nauka, Moscow (1968)

    Google Scholar 

  5. Davydov, A.S.: Solid State Theory. Nauka, Moscow (1976)

    Google Scholar 

  6. Hyman, J.M., McLaughlin, D.W., Scott, A.C.: On Davydov’s alpha-helix solitons. Physica D 3, 23 (1981)

    ADS  MATH  Google Scholar 

  7. Scott, A.C.: Dynamics of Davydov solitons. Phys. Rev. A 26, 578 (1982)

    ADS  MathSciNet  Google Scholar 

  8. Scott, A.C.: The vibrational structure of Davydov solitons. Phys. Scr. 25, 651 (1982)

    ADS  MATH  Google Scholar 

  9. Lomdahl, P.S., Layne, S.P., Bigio, I.J.: Solitons in biology. Los Alamos Sci. 10, 2 (1984)

    Google Scholar 

  10. Scott, A.C.: Davydov solitons in polypeptides. Philos. Trans. R. Soc. Lond. A 315, 423 (1985)

    ADS  Google Scholar 

  11. Landau, L.D.: Uber die Bewegund der Electronen in Kristallgotter. Phys. Z. Sowjetunion 3, 664 (1933)

    MATH  Google Scholar 

  12. Pekar, S.I.: Autolocalization of the electron in the dielectric inertially polarized media. J. Exp. Theor. Phys. 16, 335 (1946)

    Google Scholar 

  13. Pekar, S.I.: A Study on the Electron Theory of Crystals. Gostekhizdat, Moskva (1951)

    Google Scholar 

  14. Firsov, Y.A. (ed.): Polarons. Nauka, Moscow (1975)

    Google Scholar 

  15. Toda, M.: Theory of Nonlinear Lattices, 2nd edn. Springer, Berlin (1989)

    MATH  Google Scholar 

  16. Zabusky, N.J., Kruskal M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240 (1965)

    ADS  MATH  Google Scholar 

  17. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    ADS  Google Scholar 

  18. Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972)

    ADS  MathSciNet  Google Scholar 

  19. Zakharov, V.E., Faddeev, L.D.: Korteweg–de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5, 280 (1971)

    Google Scholar 

  20. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl. 8, 226 (1974)

    MATH  Google Scholar 

  21. Zakharov, V.E., Manakov, S.V., Novikov, S.P.: Theory of Solitons: The Method of the Inverse Scattering Problem. Nauka, Moscow (1980)

    MATH  Google Scholar 

  22. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. C 35, 1 (1978)

    ADS  MathSciNet  Google Scholar 

  23. Bullaf, R., Codri, F.: Solitons. Mir, Moscow (1983)

    Google Scholar 

  24. Tahtadjian, L.A., Faddeev, L.D.: Hamiltonian Approach in Soliton Theory. Nauka, Moscow (1986)

    Google Scholar 

  25. Ablowitz, M., Sigur, H.: Solitary Waves and the Inverse Problem Method. Mir, Moscow (1982)

    Google Scholar 

  26. Davydov, A.S.: Solitons in Molecular Systems. Naukova Dumka, Kiev (1988)

    Google Scholar 

  27. Davydov, A.S.: Solitons in Bioenergetics. Naukova Dumka, Kiev (1986)

    MATH  Google Scholar 

  28. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908 (1972)

    ADS  Google Scholar 

  29. Kampan, V.I.: Nonlinear Waves in Dispersive Medium. Nauka, Moscow (1973)

    Google Scholar 

  30. Kadomtsev, B.B., Karpman, V.I.: Nonlinear waves. Phys.-Usp. 14, 40 (1971)

    Google Scholar 

  31. Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443 (1973)

    ADS  MathSciNet  Google Scholar 

  32. Wizem, J.: Linear and Non-Linear Waves. Mir, Moscow (1977)

    Google Scholar 

  33. Bishop, A.R., Krumhansl, J.A., Trullinger, S.E.: Solitons in condensed matter: a paradigm. Physica D 1, 1 (1980)

    ADS  MathSciNet  Google Scholar 

  34. Longren, K., Scott, A.C. (eds.): Solitons in Action. Academic, New York (1978)

    Google Scholar 

  35. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Nonlinear Magnetization Waves: Dynamical and Topological Solitons. Naukova Dumka, Kiev (1983)

    Google Scholar 

  36. Kosevich, A.M.: Dislocations in Elasticity Theory. Naukova Dumka, Kiev (1978)

    Google Scholar 

  37. Kosevich, A.M.: Physical Mechanics of Real Crystals. Naukova Dumka, Kiev (1981)

    Google Scholar 

  38. Davydov, A.S.: Solitons in quasi-one-dimensional molecular structures. Sov. Phys. Usp. 25, 898 (1982)

    ADS  Google Scholar 

  39. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. C 104, 1 (1984)

    ADS  MathSciNet  Google Scholar 

  40. Ovchinnikov, A.A., Ukrainskii, I.I.: Electronic processes in 1-d systems. Sov. Sci. Rev. Sect. B 9, 123 (1987)

    Google Scholar 

  41. Kosevich, A.M.: Nonlinear mechanics of crystals (one-dimensional problem). In: Proceedings of Ural Scientific Centre of RA USSR, Institute of Metal Physics, Sverdlovsk (1975)

    Google Scholar 

  42. Petrina, D.Ya., Enol’skii, V.Z.: On oscillations of one-dimensional systems. Dokl. Akad. Nauk Ukr. SSR Ser. A 8, 759 (1976)

    Google Scholar 

  43. Davydov, A.S., Kislukha, N.I.: Solitons in one-dimensional molecular chains. Sov. Phys. JETP 44, 571 (1976)

    ADS  Google Scholar 

  44. Rashba, E.I.: The theory of strong interactions of electron excitations with the lattice vibrations in molecular solids. Opt. i Spektrosk. 2(1), 75 (1957)

    Google Scholar 

  45. Rashba, E.I.: Exciton interaction with molecular lattice. Izv. AS USSR Phys. 21(1), 37 (1957)

    Google Scholar 

  46. Toyozawa, Y.: Self-trapping of an electron by the acoustical mode of lattice vibration. I. Prog. Theor. Phys. 26, 29 (1961)

    ADS  MATH  MathSciNet  Google Scholar 

  47. Davydov, A.S., Nitsovich, B.M.: Exciton–phonon interaction in one-dimensional molecular chains. Fiz. Tverd. Tela. 9(1), 2230 (1967)

    Google Scholar 

  48. Fedyanin, V.K., Yakushevich, L.V.: On exciton–phonon interaction in one-dimensional molecular chains. I. Linear approximation. Theor. Math. Phys. 30(1), 133 (1977)

    Google Scholar 

  49. Fedyanin, V.K., Yakushevich, L.V.: Elementary excitations in one-dimensional systems with resonance interaction. Theor. Math. Phys. 37, 1081 (1978)

    Google Scholar 

  50. Iordansky, S.V., Rashba, E.I.: Continuum model of tunnel autolocalization. ZhETF74 74(5), 1872 (1978)

    Google Scholar 

  51. Ioselevich, A.S., Rashba E.I.: Theory of autolocalization rate. Zh. Eksp. Teor. Fiz. 88(5), 1873 (1985)

    Google Scholar 

  52. Degtiarev, L.M., Nakhankov, V.G., Rudakov L.I.: Dynamics of the formation and interaction of Langmuir solitons and strong turbulence. Sov. Phys. JETP 40, 264 (1975)

    ADS  Google Scholar 

  53. Schulman, E.I.: On the integrability of long and short wave resonant interaction equations. Dokl. Acad. Nauk USSR 259, 579 (1981)

    Google Scholar 

  54. Malomed, B.A.: Soliton radiation stimulated by a sound wave or an external field. Sov. Phys. Phys. Plasma 13(6), 662 (1987)

    Google Scholar 

  55. Davydov, A.S., Zolotaryuk, A.V.: Autolocalized collective excitations in molecular chains with cubic anharmonicity. Phys. Stat. Sol. (b) 115, 115 (1983)

    Google Scholar 

  56. Davydov, A.S., Zolotaryuk, A.V.: Solitons in molecular systems with nonlinear nearest-neighbor interactions. Phys. Lett. A 94, 49 (1983)

    ADS  Google Scholar 

  57. Davydov, A.S., Zolotaryuk, A.V.: Electrons and excitons in nonlinear molecular chains. Phys. Scr. 28, 249 (1983)

    ADS  MATH  MathSciNet  Google Scholar 

  58. Karabovsky, A.V., Kislukha, N.I.: A variational approach to the problem of solitons in molecular chains. Ukr. Fiz. Jurn. 27(4), 496 (1982)

    Google Scholar 

  59. Skrinjiar, M.J., Kapor, D.V., Stojanovic, S.D.: Solitons in molecular chains with cubic anharmonicity. Phys. Lett. A 117, 199 (1986)

    ADS  Google Scholar 

  60. Primatarova, M.T.: Solitary excitations in molecular chains due to the anharmonicity of the intermolecular vibrations. Phys. Stat. Sol. (b) 138, 101 (1986)

    Google Scholar 

  61. Ablowitz, M.J., Ladik, J.F.: A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55(3), 213 (1976)

    MATH  MathSciNet  Google Scholar 

  62. Ablowitz, M.J., Ladik, J.F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17(6), 1011 (1976)

    ADS  MATH  MathSciNet  Google Scholar 

  63. Kuprievich, V.A.: Variational study of stationary localized states of molecular chains in a discrete model. Theor. Math. Phys. 64, 269 (1985)

    Google Scholar 

  64. Kuprievich, V.A.: On autolocalization of the stationary states in a finite molecular chain. Phys. D: Nonlinear Phenom. 14, 395 (1985)

    ADS  MathSciNet  Google Scholar 

  65. Kislukha, N.I.: Strong autolocalization of exciton in monomolecular film. Ukr. Fiz. Zh. 23(2), 209 (1983)

    Google Scholar 

  66. Kislukha, N.I.: Effect of discreteness in the theory of Davydov solitons. Ukr. Fiz. Zh. 31, 1323 (1986)

    Google Scholar 

  67. Vakhnenko, A.A., Gaididei, Yu.B.: On the motion of solitons in discrete molecular chains. Theor. Math. Phys. 68, 873 (1986)

    MathSciNet  Google Scholar 

  68. Kyslukha, N.I., Karbovsky, A.V.: Davydov soliton under consideration of acoustic wave dispersion. Ukr. Fix. Zh. 27(3), 328 (1982)

    Google Scholar 

  69. Eremko, A.A., Sergeenko, A.I.: On soliton theory in molecular chains. Ukr. Fiz. Zh. 24(12), 3720 (1982)

    Google Scholar 

  70. Eremko, A.A., Sergeenko, A.I.: Excitons and soliton excitations in molecular chains. Ukr. Fiz. Zh. 28, 338 (1983)

    Google Scholar 

  71. Sergeenko, A.I.: Solitons in closed molecular chains. Nonlinear Turbul. Process. Phys. 1, 1051 (1984)

    ADS  MathSciNet  Google Scholar 

  72. Kapitanchuk, O.L., Kudritskaia, Z.G., Shramko, O.V.: Numerical study of the soliton dynamics in discrete cyclic chains. Ukr. Fiz. Zh. 32(4), 498 (1987)

    Google Scholar 

  73. Tran, P.X., Reichl, L.E.: The effect of finiteness on the selftrapping of an electron in a one-dimensional lattice. Phys. Lett. A 121, 135 (1987)

    ADS  Google Scholar 

  74. Tran, P.X.: Bistability transition in the self-trapping of an electron in a one-dimensional molecular chain. Phys. Lett. A 123, 231 (1987)

    ADS  Google Scholar 

  75. van Velzen, G.A., Tjon, J.A.: Numerical studies on the stability of Davydov solitons. Phys. Lett. A 116, 167 (1986)

    ADS  Google Scholar 

  76. Zolotaruk, A.V., Savin, A.V.: O dinamicheskoi ustoichivosti nelineinyh kollektivnyh vozbuzhdenij v molekulyarnyh tsepochkah. Preprint ITF-87-129R, Kiev (1987)

    Google Scholar 

  77. Davydov, A.S., Eremko, A.A., Sergeenko, A.I.: Solitons in α-helix protein molecules. Ukr. Fis. Zh. 23, 983 (1978)

    Google Scholar 

  78. Kuprievich, V.A., Klimenko, V.E, Shramko, O.V.: Stationary autolocalized states in α-helix polypeptide. Ukr. Fiz. Zh. 30(8), 1158 (1985)

    Google Scholar 

  79. Zabusky, N.J.: Solitons and energy transport in nonlinear lattices. Comput. Phys. Commun. 5, 1 (1973)

    ADS  Google Scholar 

  80. Makhankov, V.G.: On stationary solutions of Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50(1), 42 (1974)

    ADS  MathSciNet  Google Scholar 

  81. Ktitorov, S.A., Siparov, S.V.: Condensons in thin filaments. Fiz. Tverd. Tela. 19, 3562 (1977)

    Google Scholar 

  82. Zmnidzinas, J.S.: Electron trapping and transport by supersonic solitons in one-dimensional systems. Phys. Rev. B 17, 3919 (1978)

    ADS  Google Scholar 

  83. Davydov, A.S.: Influence of the electron–phonon interaction on electron motion in a one-dimensional molecular chain. Theor. Math. Phys. 40, 408 (1979)

    Google Scholar 

  84. Kislukha N.I., Karbovskii, A.V.: Influence of anharmonicity and dispersion properties on Davydov soliton. Ukr. Fiz. Zh. 28, 515 (1983)

    Google Scholar 

  85. Davydov, A.S., Zolotaryuk, A.V.: Subsonic and supersonic solitons in nonlinear molecular chains. Phys. Scr. 30, 426 (1984)

    ADS  Google Scholar 

  86. Mel’nikov, V.K.: Integration method of the Korteveg–de Vries equation with a self-consistent source. Phys. Lett. A 133, 493 (1988)

    ADS  MathSciNet  Google Scholar 

  87. Zolotaryuk, A.V.: Multi-particle Davydov solitons. In: Physics of Multi-Particle Systems, vol. 13, p. 40. Naukova Dumka, Kiev (1988)

    Google Scholar 

  88. Bolterauer, H., Henkel, R.D.: Solitons in the alpha-helix. Phys. Scr. 13, 314 (1986)

    Google Scholar 

  89. Perez, P., Theodorakopoulos, N.: Competing mechanisms for the transport of energy in the α-helix. Phys. Lett. A 124, 267 (1987)

    ADS  Google Scholar 

  90. Zolotaryuk, A.V., Pnevmatikos, St., Savin A.V.: Self–trapping in a molecular chain with substrate potential. In: Christiansen, P.L., Scott, A.C. (eds.) Davydov’s Soliton Revisited, p. 191. Plenum Press, London (1990)

    Google Scholar 

  91. Careri, G., Buontempo, U., Carta, F., Gratton, E., Scott, A.C.: Infrared absorption in acetanilide by solitons. Phys. Rev. Lett. 51, 304 (1983)

    ADS  Google Scholar 

  92. Careri, G., Buontempo, U., Galluzzi, F., Scott, A.C., Gratton, E., Shyamsunder, E.: Spectroscopic evidence for Davydov-like solitons in acetanilide. Phys. Rev. B 30, 4689 (1984)

    ADS  Google Scholar 

  93. Eilbeck, J.C., Lomdahl, P.S., Scott, A.: Soliton structure in crystalline acetanilide. Phys. Rev. B 30, 4703 (1984)

    ADS  Google Scholar 

  94. Holstein, T.: Studies of polaron motion. Part I. The molecular crystal model. Ann. Phys. 8, 325 (1959)

    Google Scholar 

  95. Holstein, T.: Dynamics of large polarons in quasi-1-d solids. Mol. Cryst. Liq. Cryst. 77, 235 (1981)

    Google Scholar 

  96. Appel, J.: Polarons. Solid State Phys. 21, 193 (1968)

    Google Scholar 

  97. Davydov, A.S., Enol’skii, V.Z.: Motion of an excess electron in a molecular lattice under consideration of interacting with optical phonons. Zh. Eksp. Teor. Fiz. 79, 1888 (1980)

    Google Scholar 

  98. Zolotaruk, A.V., Savin, A.V.: Solitony v molekulyarnyh tsepochkah s opticheskimi kolebaniyami i angarmonizmom. Preprint ITF-87-68R, Kiev (1987)

    Google Scholar 

  99. Zolotaryuk, A.V., Savin, A.V.: Solitons in molecular chains with intramolecular nonlinear interactions. Physica D 46, 295 (1990)

    ADS  MathSciNet  Google Scholar 

  100. Takeno, S.: Vibron solitons in one-dimensional molecular crystals. Prog. Theor. Phys. 71, 395 (1984)

    ADS  MathSciNet  Google Scholar 

  101. Takeno, S.: Vibron solitons and coherent polarization in an exactly tractable oscillator-lattice system. Prog. Theor. Phys. 73, 853 (1985)

    ADS  Google Scholar 

  102. Takeno, S.: Vibron solitons and soliton-induced infrared spectra of crystalline acetanilide. Prog. Theor. Phys. 75, 1 (1986)

    ADS  Google Scholar 

  103. Kosevich, A.M., Kovalev, A.S.: Selflocalization of vibrations in a one-dimensional anharmonic chain. Zh. Eksp. Teor. Fiz. 67, 1793 (1974)

    Google Scholar 

  104. Oraevskii, A.N., Sudakov, M.Yu.: Anharmonicity and solitons in molecular chains. Zh. Eksp. Teor. Fiz. 92(4), 1366 (1987)

    Google Scholar 

  105. Davydov, A.S.: The motion of a soliton in a one-dimensional molecular lattice taking into account thermal vibrations. Zh. Eksp. Teor. Fiz. 78, 789 (1980)

    ADS  Google Scholar 

  106. Davydov, A.S.: Quantum theory of quasi-particle motion in a molecular chain taking into account thermal vibrations. I. Non-localized states. Ukr. Fiz. Zh. 32, 170 (1987)

    Google Scholar 

  107. Davydov, A.S.: Quantum theory of quasi-particle motion in a molecular chain taking into account thermal vibrations. I. Localized states. Ukr. Fiz. Zh. 32, 352 (1987)

    Google Scholar 

  108. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Intramolecular excitation dynamics in a thermalized chain: I. Formation of autolocalized states in a cyclic chain. Phys. Stat. Sol. (b) 143, 569 (1987)

    Google Scholar 

  109. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Intramolecular excitation dynamics in a thermalized chain: II. Formation of autolocalized states in a chain with free ends. Phys. Stat. Sol. (b) 147, 155 (1988)

    Google Scholar 

  110. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Formation of soliton states in a molecular chain taking into account quantum thermal vibrations. Ukr. Fiz. Zh. 33, 1135 (1988)

    Google Scholar 

  111. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Intramolecular dynamics of excitation in a thermalized molecular chain. Formation of localized states in a cyclic chain. In: Physics of Many-Particle Systems, vol. 15, p. 40. Naukova dumka, Kiev (1989)

    Google Scholar 

  112. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Intramolecular dynamics of excitation in a thermalized molecular chain. In: Proceedings of the Methods of Analytical and Numerical Modeling of Many-Particle Systems, Moscow, vol. 102 (1989)

    Google Scholar 

  113. Kadantsev, V.N., Savin, A.V.: Numerical investigation of Davydov soliton dynamics depending on the parameters of α-helix proteins. In: Proceedings of the Conference on Implementation of Mathematical Methods Using Computers in Clinical and Experimental Medicine, Moscow (1986)

    Google Scholar 

  114. Kadantsev, V.N., Savin, A.V.: Intramolecular excitation dynamics in a thermalized chain II. Formation of autolocalized states in a chain with free ends. Phys. Stat. Sol. (b) 47, 155–161 (1988)

    Google Scholar 

  115. Kadantsev, V.N.: Dynamic properties of the one-dimensional Hamiltonian of a thermalized molecular chain. In: Lupichev, L.N. (ed.) Proceedings of Institute of Physical and Technological Problems. A Study of Dynamic Properties of Distributed Media, Moscow, vol. 23 (1991)

    Google Scholar 

  116. Cruseiro, L., Halding, J., Christiansen, P.L., Skovguard, O., Scott, A.C.: Temperature effects on the Davydov soliton. Phys. Rev. A 37, 880 (1988)

    ADS  Google Scholar 

  117. Lomdahl, P.S., Kerr, W.C.: Do Davydov solitons exist at 300 K? Phys. Rev. Lett. 55, 1235 (1985)

    ADS  Google Scholar 

  118. Lomdahl, P.S., Kerr, W.C.: Finite temperature effects on models of hydrogen-bonded polypeptides. In: Physics of Many-Particle Systems, vol. 12, p. 20. Naukova Dumka, Kiev (1987)

    Google Scholar 

  119. Lawrence, A.F., McDaniel, J.C., Chang, D.B., Pierce, B.M., Birge, R.R.: Dynamics of the Davydov model in α-helical proteins: effects of the coupling parameter and temperature. Phys. Rev. A 33, 1188 (1986)

    ADS  Google Scholar 

  120. Nevskaya, N.A., Chirgadze, Yu.N.: Infrared spectra and resonance interactions of amide-I and II vibrations of α-helix. Biopolymers 15, 637 (1976)

    Google Scholar 

  121. Chirgadze, Yu.N.: Resonant interaction of amide oscillations in polypeptide structures. In: Modern Problems of Solid State Physics and Biophysics, vol. 246. Naukova dumka, Kiev (1982)

    Google Scholar 

  122. Kuprievich, V.A., Kudritskaya, Z.G.: Davydov solitons and evaluation of the exciton–phonon interaction parameters. In: Modern Problems of Solid State Physics and Biophysics, vol. 96. Naukova dumka, Kiev (1982)

    Google Scholar 

  123. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77: The Art of Scientific Computing. Press Syndicate of the University of Cambridge, Cambridge/New York (1992)

    Google Scholar 

  124. Rolfe, T.J., Rice, S.A., Dancz, J.: A numerical study of large amplitude motion on a chain of coupled nonlinear oscillators. J. Chem. Phys. 70, 26 (1979)

    ADS  Google Scholar 

  125. Rolfe, T.J., Rice, S.A.: Simulation studies of the scattering of a solitary wave by a mass impurity in a chain of nonlinear oscillators. Physica D 1, 375 (1980)

    ADS  Google Scholar 

  126. Halding, J., Lamdahl, P.S.: Coherent excitations of a 1-dimensional molecular lattice with mass variation. Phys. Lett. A 124, 37 (1987)

    ADS  Google Scholar 

  127. Yomosa, S.: Solitary excitation in muscle proteins. Phys. Lett. A 32, 1752 (1985)

    Google Scholar 

  128. Perez, P., Theodorakopoulos, N.: Solitary excitation in the α-helix: viscous and thermal effects. Phys. Lett. A 117(8), 405 (1986)

    ADS  Google Scholar 

  129. Layne, S.P.: The Modification of Davydov Solitons by the Extrinsic N–H–C=O Group. Nonlinear Electrodynamics in Biological Systems. Plenum Press, New York (1986)

    Google Scholar 

  130. Layne, S.P.: A possible mechanism for general anesthesia. Los Alamos Sci. 10, 23 (1989)

    Google Scholar 

  131. Savin, A.V.: Davydov soliton dynamics in heterogeneous molecular chain. Ukr. Fiz. Zh. 34(9), 1300–1305 (1989)

    MathSciNet  Google Scholar 

  132. Förner, W.: Quantum and disorder effects in Davydov soliton theory. Phys. Rev. A 44, 2694 (1976)

    Google Scholar 

  133. Chirgadze, Yu.N., Nevskaya, N.A.: Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 15, 607 (1976)

    Google Scholar 

  134. Chirgadze, Yu.N., Nevskaya, N.A.: Infrared spectra and resonance interaction of amide-I vibration of the parallel-chain pleated sheet. Biopolymers 15, 627 (1976)

    Google Scholar 

  135. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Synergetics of molecular systems. I. Dynamics of an one-dimensional nonlinear lattice. In: Lupichev L.N. (ed.) Proceedings of Nonlinear Phenomena in Open Systems, Moscow, vol. 3 (2002)

    Google Scholar 

  136. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Synergetics of molecular systems. II. Bistability induced by extension of a homogeneous chain. In: Proceedings of Nonlinear Phenomena in Open Systems, Moscow, vol. 3 (2004)

    Google Scholar 

  137. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Synergetics of molecular systems. III. Localisation of nonlinear vibrations in one-dimensional lattice. In: Proceedings of Nonlinear Phenomena in Open Systems, Moscow, vol. 3 (2006)

    Google Scholar 

  138. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149 (1964)

    MATH  MathSciNet  Google Scholar 

  139. Zolotaryuk, A.V., Spatschek, K.H., Savin, A.V.: Bifurcation scenario of the Davydov–Scott self-trapping mode. Europhys. Lett. 31, 531–536 (1995)

    ADS  Google Scholar 

  140. Zolotaryuk, A.V., Spatschek, K.H., Savin A.V.: Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains. Phys. Rev. B 54, 266 (1996)

    ADS  Google Scholar 

  141. Kadantsev, V.N.: Features of auto-localised steady states in finite thermalized molecular chains. In: Lupichev, L.N. (ed.) Proceedings of a Study of Dynamic Properties of Distributed Media, Moscow, vol. 73 (1990)

    Google Scholar 

  142. Kadantsev, V.N., Savin, A.V.: The capture of an extra electron by supersonic acoustic solitons in a molecular chain in the presence of thermal vibrations. Phys. Stat. Sol. (b) 161, 769 (1990)

    Google Scholar 

  143. Kadantsev, V.N., Lupichev, L.N.: Extra electron capture by supersonic acoustic soliton in a molecular chain in the presence of thermal vibrations. In: Lupichev, L.N. (ed.) Proceedings of Applied Aspects of Distributed System Analysis, Moscow, vol. 3 (1990)

    Google Scholar 

  144. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Dynamics of electro-soliton in a thermalized chain. In: Lupichev, L.N. (ed.) Proceedings of the Dynamical Processes in Complex Systems, Moscow, vol. 3 (1991)

    Google Scholar 

  145. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Dynamics of a localised state of intramolecular excitation in a molecular chain with thermalized acoustic and optic vibrations. In: Lupichev, L.N. (ed.) Proceedings of the Processes and Structures in Open Systems, Moscow, vol. 3 (1992)

    Google Scholar 

  146. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Auto-localisation of a quantum quasi-particle in a biomolecular chain with substrate. In: Lupichev, L.N. (ed.) Proceedings of the Nonlinear Phenomena in Distributed Systems, Moscow, vol. 3 (1994)

    Google Scholar 

  147. Popov, E.M.: Structural Organization of Proteins. Nauka, Moscow (1989)

    Google Scholar 

  148. Volkenstein, M.V.: Biophysics. Nauka, Moscow (1988)

    Google Scholar 

  149. Shaitan, K.V., Rubin, A.B.: Conformational mobility and Mossbauer effect in biological systems. Mol. Biol. (USSR) 14, 1323 (1980)

    Google Scholar 

  150. Rubin, A.B.: Biophysics, vol. 1. Vyshaia shkola, Moscow (1987)

    Google Scholar 

  151. Karplus, M., McCammon, J.A.: The internal dynamics of globular proteins. CRC Crit. Rev. Biochem. 9, 293 (1981)

    Google Scholar 

  152. Petersen, W.P.: Lagged Fibonacci random number generators for the NEC SX-3. Int. J. High Speed Comput. 6, 387 (1993)

    Google Scholar 

  153. Savin, A.V., Zolotaryuk, A.V.: Dynamics of the amide-I excitation in a molecular chain with thermalized acoustic and optical modes. Physica D 68, 59 (1993)

    ADS  Google Scholar 

  154. Brizhik, L.S., Davydov, A.S.: Soliton excitation in one-dimensional molecular systems. Phys. Stat. Sol. (b) 115, 615 (1983)

    Google Scholar 

  155. Turner, I.E., Anderson, V.E., Fox, K.: Ground-state energy eigenvalues and eigenfunctions for a electron in an electric-dipole field. Phys. Rev. 174, 81 (1968)

    ADS  Google Scholar 

  156. Ukrainskii, I.I., Mironov, S.L.: The origination of the conducting band in polypeptide chains. Teor. Eksper. Chem. 15, 144 (1979)

    Google Scholar 

  157. Mironov, S.L.: Calculation of the conduction band for excess electron in proteins. Teor. Eksper. Chem. 18, 155 (1982)

    Google Scholar 

  158. Hol, W.G.J., Van Duijnen, P.T., Berendsen, H.J.C.: The alpha-helix dipole and the properties of proteins. Nature 273, 443 (1978)

    ADS  Google Scholar 

  159. Bates, W.W., Hobbs, M.E.: The dipole moment of some amino acids and the structure of amino group. J. Am. Chem. Soc. 73, 2151 (1951)

    Google Scholar 

  160. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Electrosoliton dynamics in a thermalized chain. Phys. Stat. Sol. (b) 183, 193 (1994)

    Google Scholar 

  161. Eremko, A.A.: Dissociation of Davydov’s solitons in the field of electromagnetic wave. Dokl. Ac. Nauk UkrSSR 3, 52 (1984)

    Google Scholar 

  162. Eremko, A.A., Gaididei, Yu., Vakhnenko, A.A.: Dissociation-accompanied Raman scattering by Davydov solitons. Phys. Stat. Sol. (b) 127, 703 (1985)

    Google Scholar 

  163. Eremko, A.A., Vakhnenko, A.A.: The movement of Davydov soliton in a periodic potential. Preprint MTF, AS USSR. 88-I3P, Kiev (1988)

    Google Scholar 

  164. Kadantsev, V.N., Savin, A.V.: Interaction of Davydov solitons with periodic perturbations of a molecular chain. In: Proceedings of the Study of Dynamic Properties of Distributed Systems, Moscow, vol. 23 (1989)

    Google Scholar 

  165. Sitko, S.P., Sugakov, V.I.: Rol spinovyh sostoyanii belkovyh molekul. Dokl. Acad. Nauk USSR B 6, 63 (1984)

    Google Scholar 

  166. Webb, S.J.: Laser Raman spectroscopy of living cells. Phys. Rep. 60, 201 (1980)

    ADS  Google Scholar 

  167. Kadantsev, V.N., Mogilevskiy, V.D.: Dynamics of the protein α structure. Scientific Report. Institute of Control Problems, Moscow (1983)

    Google Scholar 

  168. Deviatkov, N.D.: Influence of electromagnetic millimeter waves on biological objects. Usp. Fiz. Nauk. 110, 453 (1973)

    Google Scholar 

  169. Webb, S.J., Stoneham, A.M.: Resonances between 10 and 1012 Hz in active bacterial cells as seen by laser Raman spectroscopy. Phys. Lett. A 60, 267 (1977)

    ADS  Google Scholar 

  170. Del Giudice, E., Doglia, S., Milani, M., Vitiello, G.: Electromagnetic interaction and cooperative effects in biological systems. In: Guttman, F., Reyzer, H. (eds.) Modern Bioelectrochemistry. Plenum, New York (1986), and Nucl. Phys. B 275 (1986)

    Google Scholar 

  171. Kadantsev, V.N.: Soliton solutions in biosystems. In: Proceedings of Conference Physics and Application of Microwave, Krasnovidovo, May 1991, pp. 22–27

    Google Scholar 

  172. Kadantsev, V.N., Kononenko, K.M., Fisun, G.O.: Bioeffects of EMF are caused by interaction with collective excitations in alpha-helix proteins. In: Proceedings of III International Congress of the European Bio-Electromagnetics Association (EBEA), Nancy, 29 Feb–2 Mar 1996

    Google Scholar 

  173. Kadantsev, V.N., Savin, A.V.: Resonance effects of microwaves are caused by their interactions with solitons in alpha-helical proteins. J. Biol. Chem. 16, 95 (1997)

    Google Scholar 

  174. Kadantsev, V.N., Goltsov, A.N.: The mechanism of elastic wave excitation by electromagnetic radiation. In: Proceedings of VI Workshop of Liquid Crystal State in Biosystems and Their Models, Puschino (1988)

    Google Scholar 

  175. Kadantsev, V.N.: Collective dynamics of quasi-one-dimensional structures in lipid membranes. In: Lupichev, L.N. (ed.) Proceedings of Nonlinear Phenomena in Distributed Systems, Moscow, vol. 68 (1994)

    Google Scholar 

  176. Kadantsev, V.N., Goltsov, A.N.: A study of the influence of lipid composition of cellular membranes on domain structure of a bilayer and lateral transport. Hum. Physiol. 21, 113 (1995)

    Google Scholar 

  177. Goltsov, A.N., Kadantsev, V.N.: Self-organization of surface and channels of communication within lipid membranes and mechanisms of protein and ion lateral transport. In: Proceedings of International Workshop of Information Processing in Cells and Tissues (IPCAT), University of Liverpool, Liverpool, 6–8 Sept 1995, p. 601

    Google Scholar 

  178. Kadantsev, V.N., Kadantsev, V.V., Tverdislov, V.A., Yakovenko, L.V.: Cooperative dynamics of quasi-1D lipid structures and lateral transport in biological membranes. Gen. Physiol. Biophys. 16, 311 (1998)

    Google Scholar 

  179. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Stationary autolocalized states in thermalized molecular chains. Phys. Stat. Sol. (b) 162, K33 (1990)

    Google Scholar 

  180. Kadantsev, V.N., Savin, A.V.: Photodissociation of Davydov solitons in thermalized chains. In: Proceedings of Symposium on the Mechanisms of Biological Action of Electromagnetic Radiation, Puschino, p. 11 (1987)

    Google Scholar 

  181. Kislukha, N.I.: Discreteness effects in the theory of Davydov solitons. Preprint ITF-85-ZR, Institute of Theoretical Physics, Kiev (1985)

    Google Scholar 

  182. Webb, S.J., Booth, A.D.: Microwave absorption by normal and tumor cells. Science 174, 72 (1971)

    ADS  Google Scholar 

  183. Devyatkov, N.D.: Influence of electromagnetic radiation of millimeter range on biological objects. Usp. Phys. Nauk. 116, 453 (1973)

    Google Scholar 

  184. Belyaev, I.Ya., Kravchenko, V.C.: Resonance effect of low-intensity millimeter waves on the chromatin conformational state of rat thymocytes. Z. Naturforsch. 49, 352 (1994)

    Google Scholar 

  185. Belyaev, I.Ya., Alipov, Ye.D., Shcheglov, V.S., Polunin, V.A., Aizenberg, O.A.: Cooperative response of Escherischia coli cells to the resonance effect of millimeter waves at super low intensity. Electro-Magnetobiol. 13, 53 (1994)

    Google Scholar 

  186. Motzkin, S.M., Benes, L., Block, N., Israel, I., May, N., Kuriyel, J., Birenbaum, L., Rosenthal, S., Han, Q.: Effects of low-level millimeter waves on cellular and subcellular systems. In: Coherent Excitations in Biological Systems, p. 47. Springer, Berlin (1983)

    Google Scholar 

  187. Didenko, N.P., Zelentsov, V.I., Cha, V.A.: Conformational changes in biomolecules induced by electromagnetic radiation. In: Devyalkov, N.D. (ed.) Effects of Nonthermal Millimeter Waves on Biological Objects, p. 63. IRE AN SSSR, Moscow (1983)

    Google Scholar 

  188. Kadantsev, V.N.: Interaction of solitons with phonons in DNA molecule. In: Lupichev, L.N. (ed.) Proceedings of the Study of Dynamic Properties of Distributed Media, Moscow, p. 17 (1991)

    Google Scholar 

  189. Kadantsev, V.N.: Effect of collective excitations in electrolyte on the electron transport along protein molecule. In: Lupichev, L.N. (ed.) Proceedings of the Study of Dynamic Properties of Distributed Media, Moscow, p. 31 (1993)

    Google Scholar 

  190. Kadantsev, V.N., Lupichev, L.N., Savin, A.V.: Cooperative effects in an α-helix protein. In: Lupichev, L.N. (ed.) Proceedings of the Methods of Complex System Analysis, Moscow, p. 3 (1993)

    Google Scholar 

  191. Kadantsev, V.N., Lupichev, L.N.: Collective excitations in an α-helix protein molecule interacting with environment. In: Lupichev, L.N. (ed.) Proceedings of Nonlinear Phenomena in Open Systems, Moscow, p. 3 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lupichev, L.N., Savin, A.V., Kadantsev, V.N. (2015). Autolocalization of Quantum Particles. In: Synergetics of Molecular Systems. Springer Series in Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-08195-3_7

Download citation

Publish with us

Policies and ethics