Skip to main content

Distribution of Solar Energy in Agriculture Landscape: Comparison Between Wet Meadow and Crops

  • Chapter
  • First Online:
The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape

Abstract

This study examines the impact of plant cover on water and energy exchange between land and atmosphere in the Třeboň Biosphere Reserve, Czech Republic. Energy fluxes, evapotranspiration and evaporative fraction were determined over typical crops of agriculture landscape and compared with fluxes in an adjacent wet meadow. The results show distinct differences in heat and water exchange between these ecosystems. Diurnal average difference in evapotranspiration rates for days with high irradiance over the wet meadow and arable crops ranged from 1.1 mm day−1 to 3.4 mm day−1. Furthermore, the evapotranspiration differences between C3 (rapeseed) and C4 (cornfield) was about 2.3 mm day−1. Analysis of thermovision pictures showed that temperature variation reached about 9 °C between the ploughed field and meadows at the time of maximum intensity of solar radiation. Heat exchange (sensible heat flux) was greater over arable lands, while water exchange (latent heat flux) was stronger over the wet meadow. The evaporative fraction displayed that more than 100 % of available energy was released by the wet meadow through evapotranspiration due to the advection of dry air from the surroundings. Wetlands show equal or even inverse temperature in vertical profile, whereas corn and wheat show noticeable higher temperature at soil surface in comparison with plant stand surface. Therefore, we suggest that introduction of wetlands to agricultural land is one of the most important instruments for the management of water and heat balance of the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegoke, J. O., & Carleton, A. M. (2000). Warm season land surface - Climate interactions in the United States Midwest from mesoscale observations. Linking Climate Change to Land Surface Change, 6, 83–97.

    Article  Google Scholar 

  • Andersen, H. E., Hansen, S., & Jensen, H. E. (2005). Evapotranspiration from a riparian fen wetland. Nordic Hydrology, 36, 121–135.

    Google Scholar 

  • Andrich, M. A., & Imberger, J. (2013). The effect of land clearing on rainfall and fresh water resources in Western Australia: A multi-functional sustainability analysis. International Journal of Sustainable Development and World Ecology. doi:10.1080/13504509.2013.850752.

    Google Scholar 

  • Attarod, P., Aoki, M., & Bayramzadech, V. (2009). Measurement of the actual evapotranspiration and crop coefficients of summer and winter seasons crop in Japan. Plant and soil environment, 55(3), 121–127.

    Google Scholar 

  • Bowen, I. S. (1926). The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27(6), 779–787. doi:10.1103/Physrev.27.779.

    Article  CAS  Google Scholar 

  • Bryant, N. A., Johnson, L. F., Brazel, A. J., Balling, R. C., Hutchinson, C. F., & Beck, L. R. (1990). Measuring the effect of overgrazing in the Sonoran Desert. Climatic Change, 17(2–3), 243–264. doi:10.1007/Bf00138370.

    Article  Google Scholar 

  • Buck, A. L. (1981). New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology, 20, 1527–1532. doi:10.1175/1520-0450(1981)-020.

    Article  Google Scholar 

  • Burba, G. G., & Verma, S. B. (2005). Seasonal and interannual variability in evapotranspiration of native tallgrass prairie and cultivated wheat ecosystems. Agricultural and Forest Meteorology, 135(1-4), 190–201. doi:10.1016/j.agrformet.2005.11.017.

    Article  Google Scholar 

  • Chattaraj, S., Chakraborty, D., Garg, R. N., Singh, R., Singh, G. P., Sehgal, V. K., Sahoo, R. N., Singh, S., Gupta, V. K., & Chand, D. (2011). Evaluating the effect of irrigation on crop evapotranspiration in wheat (Triticum aestivum L.) by combining conventional and remote sensing methods. Journal of Agricultural Physics, 11, 35–52.

    Google Scholar 

  • Djaman, K., & Irmak, S. (2013). Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. Journal of Irrigation and Drainage Engineering-Asce, 139(6), 433–446. doi:10.1061/(Asce)Ir.1943-4774.0000559.

    Article  Google Scholar 

  • Eckhardt, K., & Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284(1–4), 244–252. doi:10.1016/j.jhydrol.2003.08.005.

    Article  CAS  Google Scholar 

  • Foken, T. (2008). Micrometeorology. Berlin: Springer.

    Google Scholar 

  • Gates, D. M. (1980). Biophysical ecology. New York: Springer.

    Book  Google Scholar 

  • Ge, Q., Zhang, X., & Zheng, J. (2013). Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China. International Journal of Climatology. doi:10.1002/joc.3677.

    Google Scholar 

  • Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., & Duchemin, B. (2007). Analysis of evaporative fraction diurnal behaviour. Agricultural and Forest Meteorology, 143(1–2), 13–29. doi:10.1016/j.agrformet.2006.11.002.

    Article  Google Scholar 

  • Henderson-Sellers, A., Dickinson, R. E., Durbidge, T. B., Kennedy, P. J., Mcguffie, K., & Pitman, A. J. (1993). Tropical deforestation – modeling local-scale to regional-scale climate change. Journal of Geophysical Research-Atmospheres, 98(D4), 7289–7315. doi:10.1029/92jd02830.

    Article  Google Scholar 

  • Hesslerova, P., Pokorny, J., Brom, J., & Rejskova-Prochazkova, A. (2013). Daily dynamics of radiation surface temperature of different land cover types in a temperate cultural landscape: Consequences for the local climate. Ecological Engineering, 54, 145–154. doi:10.1016/j.ecoleng.2013.01.036.

    Article  Google Scholar 

  • Huryna, H., Brom, J., & Pokorny, J. (2014). The importance of wetlands in the energy balance of an agriculture landscape. Wetlands Ecology and Management. doi:10.1007/s11273-013-9334-2.

    Google Scholar 

  • IPCC. (2007). Climate changes – synthesis report. In R. K. Pachauri & A. Reisinger (Eds.), http://www.ipcc.ch. Accessed 16 Feb 2010.

  • IPCC. (2013). Climate Change 2013: The physical science basis. http://www.ipcc.ch. The final draft report. Dated 7 June 2013.

  • Kedziora, A., & Olejnik, J. (2002). Water balance in agricultural landscape and options for its management by change in plant cover structure of landscape. In L. Ryszkowski (Ed.), Landscape ecology in agroecosystems management (pp. 57–11). Boca Raton: CRC Press.

    Google Scholar 

  • Kedziora, A., & Ryszkowski, L. (1999). Does plant cover structure in rural areas modify climate change effects? Geographia Polonica, 72(2), 65–88.

    Google Scholar 

  • Kravčík, M., Pokorný, J., Kohutiar, J., Kovac, M., & Toth, E. (2008). Water for the recovery of the climate. A new paradigm. Kosice: Municipali and TORY Consulting.

    Google Scholar 

  • Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., & Gower, S. T. (2000). Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 14(3), 795–825. doi:10.1029/1999gb001138.

    Article  CAS  Google Scholar 

  • Květ, J., Lukavská, J., & Tetter, M. (2002). Biomass and net primary production in graminoid vegetation. In Freshwater wetlands and their sustainable future: A case study of Trebon Basin Biosphere Reserve, Czech Republic (Man and the biosphere series). Paris: UNESCO.

    Google Scholar 

  • Lhomme, J. P., & Elguero, E. (1999). Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model. Hydrology and Earth System Sciences, 3(2), 259–270.

    Article  Google Scholar 

  • Ma, E. J., Liu, A. P., Li, X., Wu, F., & Zhan, J. Y. (2013). Impacts of vegetation change on the regional surface climate: A scenario-based analysis of afforestation in Jiangxi Province, China. Advances in Meteorology. doi:10.1155/2013/796163.

  • Makarieva, A. M., & Gorshkov, V. G. (2007). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences, 11, 1013–1033.

    Article  Google Scholar 

  • Milly, P. C. D. (1997). Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics. Geophysical Research Letters, 24(3), 269–271. doi:10.1029/96gl03968.

    Article  Google Scholar 

  • Monteith, J. L. (1981). Evaporation and surface-temperature. Quarterly Journal of the Royal Meteorological Society, 107(451), 1–27. doi:10.1256/Smsqj.45101.

    Article  Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (1990). Principles of environmental physics. London: Edward Arnold Press.

    Google Scholar 

  • Penman, W. R. (1948). Intrathecal ephedrine sulfate anesthesia in obstetrics. American Journal of Medicine, 5(4), 621–621. doi:10.1016/0002-9343(48)90123-5.

    Article  Google Scholar 

  • Perez, P. J., Castellvi, F., & Martínez-Cob, A. (2008). A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux. Agricultural and Forest Meteorology, 148, 25–37.

    Article  Google Scholar 

  • Pielke, R. A., Dalu, G. A., Snook, J. S., Lee, T. J., & Kittel, T. G. F. (1991). Nonlinear influence of mesoscale land-use on weather and climate. Journal of Climate, 4(11), 1053–1069. doi:10.1175/1520-0442(1991)004<1053:Niomlu>2.0.Co;2.

    Article  Google Scholar 

  • Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X. B., & Denning, A. S. (1998). Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology, 4(5), 461–475. doi:10.1046/j.1365-2486.1998.t01-1-00176.x.

    Article  Google Scholar 

  • Pivec, J., & Brant, V. (2009). The actual consumption of water by selected cultivated and weed species of plants and the actual values of evapotranspiration of the stands as determined under field conditions. Soil and Water Research, 4(2), 39–48.

    Google Scholar 

  • Pokorný, J., Brom, J., Čermák, J., Hesslerová, P., Huryna, H., Nadyezhdina, N., & Rejšková, A. (2010). Solar energy dissipation and temperature control by water and plants. International Journal of Water, 5, 311–336. doi:10.1504/IJW.2010.038726.

    Article  Google Scholar 

  • Rejšková, A., Čížkova, H., Brom, J., & Pokorný, J. (2010). Transpiration, evapotranspiration and energy fluxes in a temperate wetland dominated by Phalaris arundinacea under hot summer conditions. Ecohydrology, 5, 19–27. doi:10.1002/eco.184.

    Article  Google Scholar 

  • Ripl, W. (2003). Water: The bloodstream of the biosphere. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358(1440), 1921–1934. doi:10.1098/rstb.2003.1378.

    Article  Google Scholar 

  • Ryszkowski, L., & Kedziora, A. (1995). Modification of the effects of global climate change by plant cover structure in an agricultural landscape. Geographia Polonica, 65(2), 5–35.

    Google Scholar 

  • Ryszkowski, L., & Kedziora, A. (2007). Modification of water flows and nitrogen fluxes by shelterbelts. Ecological Engineering, 29(4), 388–400. doi:10.1016/j.ecoleng.2006.09.023.

    Article  Google Scholar 

  • Sanches, L., Vourlitis, G. L., Alves, M. D., Pinto, O. B., & Nogueira, J. D. (2011). Seasonal patterns of evapotranspiration for a Vochysia divergens forest in the Brazilian Pantanal. Wetlands, 31(6), 1215–1225. doi:10.1007/s13157-011-0233-0.

    Article  Google Scholar 

  • Shahrokhnia, M. H., & Sepaskhah, A. R. (2012). Evaluation of wheat and maize evapotranspiration determination by direct use of the Penman-Monteith equation in a semi-arid region. Archives of Agronomy and Soil Science, 58(11), 1283–1302. doi: 10.1080/03650340.2011.584216.

  • Shuttleworth, W. J. (2007). Putting the ‘vap’ into evaporation. Hydrology and Earth System Sciences, 11(1), 210–244.

    Article  Google Scholar 

  • Suleiman, A., & Crago, R. (2004). Hourly and daytime evapotranspiration from grassland using radiometric surface temperatures. Agronomy Journal, 96, 384–390.

    Article  Google Scholar 

  • Unland, H. E., Houser, P. R., Shuttleworth, W. J., & Yang, Z. L. (1996). Surface flux measurement and modelling at a semi-arid Sonoran Desert site. Agricultural and Forest Meteorology, 82, 119–153.

    Article  Google Scholar 

  • van Noordwijk, M., Namirembe, S., Catacutan, D., Williamson, D., & Gebrekirstos, A. (2014). Pricing rainbow, green, blue and grey water: Tree cover and geopolitics of climatic teleconnections. Current Opinion in Environmental Sustainability 6(0), 41–47. doi:http://dx.doi.org/10.1016/j.cosust.2013.10.008

  • Vitousek, P. M. (1994). Beyond global warming – ecology and global change. Ecology, 75(7), 1861–1876. doi:10.2307/1941591.

    Article  Google Scholar 

  • Werth, D., & Avissar, R. (2002). The local and global effects of Amazon deforestation. Journal of Geophysical Research-Atmospheres, 107(D20),55-1–55-8. doi:10.1029/2001jd000717.

  • Zhang, Y. C., Shen, Y. J., Sun, H. Y., & Gates, J. B. (2011). Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. Journal of Hydrology, 408(3–4), 203–211. doi:10.1016/j.jhydrol.2011.07.036.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the MSMT RVO ENKI and South Bohemia University grant GAJU 152/2010/Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Huryna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huryna, H., Hesslerová, P., Pokorný, J., Jirka, V., Lhotský, R. (2015). Distribution of Solar Energy in Agriculture Landscape: Comparison Between Wet Meadow and Crops. In: Vymazal, J. (eds) The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-08177-9_8

Download citation

Publish with us

Policies and ethics