Skip to main content

Biomass Production in Permanent Wet Grasslands Dominated with Phalaris arundinacea: Case Study of the Třeboň Basin Biosphere Reserve, Czech Republic

  • Chapter
  • First Online:

Abstract

Phalaris arundinacea is a highly productive perennial grass which inhabits both natural and human-affected wetlands. Along with natural genotypes, there are a number of cultivars bred for fodder production, especially in cool climatic areas. At present P. arundinacea is being investigated as a potential energy crop. Use of seminatural and natural stands of P. arundinacea as an energy resource requires a knowledge of the variation of aboveground biomass production, which forms the agricultural yield. This work gives an overview of long-term investigation of the production of P. arundinacea on various types of natural biotopes. It also presents results of a detailed field experiment assessing the effects of various management (cutting frequency, mulching, fertilizing) on the production of aboveground biomass in a seminatural wetland dominated by P. arundinacea. The results confirm that monodominant stands of P. arundinacea attain a high production in Central Europe. The seasonal maximum of aboveground biomass of natural stands ranged from 4 to 14 metric tonnes dry weight per hectare (t.ha−1) with an average of 9.5 t ha−1. Among the management types, the lowest annual agricultural yield of 4.1 t ha−1 (dry weight) was found in the treatment one cut per year and no fertilization. The maximum yield of 11 t ha−1 was achieved under three cuts per year and fertilization with a double dose of N and single doses of P and K. Two cuts per year and fertilization by P and K seem to combine the production and non-production functions in an optimum way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Burvall, J. (1997). Influence of harvest time and soil types on fuel quality in reed canary grass (Phalaris arundinacea L.). Biomass and Bioenergy, 12, 149–154.

    Article  CAS  Google Scholar 

  • Buxton, D. R., Anderson, I. C., & Hallam, A. (1998). Intercropping sorghum into alfalfa and reed canarygrass to increase biomass yield. Journal of Production Agriculture, 11, 481–486.

    Article  Google Scholar 

  • Casler, M. D., Undersander, D. J., Frederick, C., Combs Crop Science, D. K., & Reed, J. D. (1998). An on-farm test of perennial forage grass varieties under management intensive grazing. Journal of Production Agriculture, 11, 92–99.

    Google Scholar 

  • Casler, M. D., Phillips, M. M., & Krohn, A. L. (2009). DNA polymorphisms reveal geographic races of reed canarygrass. Crop Science, 49, 2139–2148.

    Article  CAS  Google Scholar 

  • Chekol, T., Vough, L. R., & Chaney, R. L. (2002). Plant-soil-contaminant specificity affects phytoremediation of organic contaminants. International Journal of Phytoremediation, 4, 17–26.

    Article  CAS  Google Scholar 

  • Cherney, J. H., Cherney, D. J. R., & Casler, M. D. (2003). Low intensity harvest management of reed canarygrass. Agronomy Journal, 95, 627–634.

    Article  Google Scholar 

  • Coulman, B. E. (1995). Bellevue reed canarygrass (Phalaris arundinacea L.). Canadian Journal of Plant Science, 75, 473–474.

    Article  Google Scholar 

  • Coulman, B. E., Woods, D. L., & Clark, K. W. (1977). Distribution within the plant, variation with maturity, and heritability of gramine and hordenine in reed canary grass. Canadian Journal of Plant Science, 57, 771–777.

    Article  CAS  Google Scholar 

  • Dierschke, H. (1994). Pflanzensoziologie. Grundlagen und Methoden. Stuttgart: Eugen Ulmer.

    Google Scholar 

  • Dore, W. G., & McNeill, J. (1980). Grasses of Ontario. Canada Department of Agriculture Monographs, 26, 1–566.

    Google Scholar 

  • Figiel, C. R., Collins, B., & Wein, G. (1995). Variation in survival and biomass of two wetland grasses at different nutrient and water levels over a six week period. Bulletin of Torrey Botanical Club, 122, 24–29.

    Article  Google Scholar 

  • Finel, l M. (2003). The use of reed canary-grass (Phalaris arundinacea) as a short fibre raw material for the pulp and oaper industry. Doctoral Thesis. Umeå: Swedish University of Agricultural Sciences.

    Google Scholar 

  • Galatowitsch, S. M., Anderson, N. O., & Ascher, P. D. (1999). Invasiveness in wetland plants in temperate North America. Wetlands, 19, 733–755.

    Article  Google Scholar 

  • Groffman, P. M., Axelrod, E. A., Lemunyon, J. L., & Sullivan, W. M. (1991). Denitrification in grass and forest vegetated filter strips. Journal of Environmental Quality, 20, 671–674.

    Article  CAS  Google Scholar 

  • Gubanov, I. A., Kiseleva, K. B., Novikov, B. C., & Tihomirov, B. N. (1995). Flora of vascular plants of central European Russia. Moscow: Argus.

    Google Scholar 

  • Hadders, G., & Olsson, R. (1997). Harvest of grass for combustion in late summer and in spring. Biomass and Bioenergy, 12, 171–175.

    Article  Google Scholar 

  • Hallam, A., Anderson, I. C., & Buxton, D. R. (2001). Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass and Bioenergy, 21, 407–424.

    Article  Google Scholar 

  • Hellqvist, S., Finell, M., & Landstrom, S. (2003). Reed canary grass – observations of effects on crop stand and fibre quality caused by infestation of Epicalamus phalaridis. Agriculture Food Science Finland, 12, 49–56.

    Google Scholar 

  • Hoveland, C. S. (1992). Grazing systems for humid regions. Journal of Production Agriculture, 5, 23–27.

    Article  Google Scholar 

  • Hrivnák, R., & Ujházy, K. (2003). The stands with the Phalaroides arundinacea dominance in the Ipeľ River catchment area (Slovakia and Hungary). Acta Botanica Hungarica, 45, 297–314.

    Article  Google Scholar 

  • Jones, T. A., Carlson, I. T., & Buxton, D. R. (1988). Persistence of reed canarygrass clones in binary mixture with alfalfa and birdsfoot trefoil. Agronomy Journal, 80, 967–970.

    Article  Google Scholar 

  • Kading, H., & Kreil, W. (1990). Optimum use and management of reed canary grass swards. Archiv für Acker und Pflanzenbau und Bodenkunde – Archives of Agronomy and Soil Science, 34, 489–495.

    Google Scholar 

  • Květ, J., & Westlake, D. F. (1998). Primary production in wetlands. In D. F. Westlake, J. Květ, & A. Szczepánski (Eds.), The production ecology of wetlands (pp. 78–168). Cambridge: Cambridge University Press.

    Google Scholar 

  • Květ, J., Jeník, J., & Soukupová, L. (Eds.). (2002). Freshwater wetlands and their sustainable future: A case study of Třeboň basin biosphere reserve, Czech republic (Man and the biosphere series 28). Paris: UNESCO and the Parthenon Publishing Group.

    Google Scholar 

  • Lamb, J. F. S., Russelle, M. P., & Schmitt, M. A. (2005). Alfalfa and reed canarygrass response to midsummer manure application. Crop Science, 45, 2293–2300.

    Article  Google Scholar 

  • Lasat, M. M., Norvell, W. A., & Kochian, L. V. (1997). Potential for phytoextraction of Cs-137 from a contaminated soil. Plant and Soil, 195, 99–106.

    Article  CAS  Google Scholar 

  • Lavergne, S., & Molofsky, J. (2004). Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Critical Reviews in Plant Science, 23, 415–429.

    Article  Google Scholar 

  • Lewandowski, I., & Schmidt, U. (2006). Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture, Ecosystems and Environment, 112, 335–346.

    Article  Google Scholar 

  • Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25, 335–361.

    Article  Google Scholar 

  • Lyons, K. E. (1998). Element stewardship abstract for Phalaris arundinacea L. reed canarygrass. Arlington: The Nature Conservancy.

    Google Scholar 

  • Merigliano, M. F., & Lesica, P. (1998). The native status of reed canary grass (Phalaris arundinacea L.) in the inland Northwest, USA. Natural Areas Journal, 18, 223–230.

    Google Scholar 

  • Milner, C., & Hughes, R. E. (1968). Methods for the measurement of primary production of grassland (International Biological Programme handbook no. 6). Oxford: Blackwell Science Publisher.

    Google Scholar 

  • Narasimhalu, P., McRae, K. B., & Kunelius, H. (1995). Hay composition, and intake and digestibility in sheep of newly introduced cultivars of timothy, tall fescue, and reed canary grass. Animal Feed Science and Technology, 55, 77–85.

    Article  Google Scholar 

  • Nilsson, D., & Hansson, P. A. (2001). Influence of various machinery combinations, fuel proportions and storage capacities on cost of co-handling of straw and reed canary grass to district heating plants. Biomass and Bioenergy, 20, 247–260.

    Article  Google Scholar 

  • Olsen, F. J., & Chong, S. K. (1991). Reclamation of acid coal refuse. Landscape and Urban Planning, 20, 309–313.

    Article  Google Scholar 

  • Ostrem, L. (1987). Studies on genetic variation in reed canary grass, Phalaris arundinacea L. I. Alkaloid type and concentration. Hereditas, 107, 235–248.

    Article  Google Scholar 

  • Ostrem, L. (1988). Studies on genetic variation in reed canary grass, Phalaris arundinacea L. II. Forage yield and quality. Hereditas, 108, 103–113.

    Article  Google Scholar 

  • Papatheofanous, M. G., Koullas, D. P., Koukios, E. G., Fuglsang, H., Schade, J. R., & Lofqvist, B. (1995). Biorefining of agricultural crops and residues: Effect of pilot-plant fractionation on properties of fibrous fractions. Biomass and Bioenergy, 8, 419–426.

    Article  CAS  Google Scholar 

  • Prach, K., Jeník, J., & Large, A. R. G. (Eds.). (1996). Floodplain ecology and management. The Lužnice River in the Třeboň Biosphere Reserve, Central Europe. Amsterdam: SPB Academic Publishing.

    Google Scholar 

  • Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T., et al. (2009). Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology, 100, 4931–4944.

    Google Scholar 

  • Riesterer, J. L., Undersander, D. J., Casler, M. D., & Combs, D. K. (2000). Forage yield of stockpiled perennial grasses in the upper midwest USA. Agronomy Journal, 92, 740–747.

    Article  Google Scholar 

  • Saijonkari-Pahkala, K. (2001). Non-wood plants as raw material for pulp and paper. Agriculture and Food Science Finland, 10, 1–101.

    CAS  Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of Total Environment, 281, 87–98.

    Article  CAS  Google Scholar 

  • Schmidt, M. A., Russelle, M. P., Randall, G. W., Sheaffer, C. C., Greub, L. J., & Clayton, P. D. (1999). Effect of rate, timing, and placement of liquid dairy manure on reed canarygrass yield. Journal of Production Agriculture, 12, 239–243.

    Article  Google Scholar 

  • Sheaffer, C. C., & Marten, G. C. (1992). Seeding patterns affect grass and Alfalfa yield in mixtures. Journal of Production Agriculture, 5, 328–332.

    Article  Google Scholar 

  • Sikora, F. J., Tong, Z., Behrends, L. L., Steinberg, S. L., & Coonrod, H. S. (1995). Ammonium removal in constructed wetlands with recirculating subsurface flow, removal rates and mechanisms. Water Science and Technology, 32, 193–202.

    Article  CAS  Google Scholar 

  • Vymazal, J. (1995). Constructed wetlands for wastewater treatment in the Czech Republic – state of the art. Water Science and Technology, 32, 357–364.

    Article  CAS  Google Scholar 

  • Vymazal, J. (2001). Constructed wetlands for wastewater treatment in the Czech Republic. Water Science and Technology, 44, 369–374.

    CAS  Google Scholar 

  • Wittenberg, K. M., Duynisveld, G. W., & Tosi, H. R. (1992). Comparison of alkaloid content and nutritive values for tryptamine free and beta-carboline free cultivars of reed canary grass (Phalaris arundinacea L.). Canadian Journal of Animal Science, 72, 903–909.

    Article  CAS  Google Scholar 

  • Zhu, T., & Sikora, F. J. (1995). Ammonium and nitrate removal in vegetate and unvegetated gravelbed microcosm wetlands. Water Science and Technology, 32, 219–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Čížková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Čížková, H. et al. (2015). Biomass Production in Permanent Wet Grasslands Dominated with Phalaris arundinacea: Case Study of the Třeboň Basin Biosphere Reserve, Czech Republic. In: Vymazal, J. (eds) The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-08177-9_1

Download citation

Publish with us

Policies and ethics